
X.509 Style Guide

wuwenlong527 于 2007-10-17 16:07:00 发布 2949 收藏
分类专栏： CA &amp; OCSP 文章标签： extension microsoft character standards encoding deprecated

 CA & OCSP 专栏收录该内容
29 篇文章 0 订阅
订阅专栏

soruce :http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

 X.509 Style Guide​
 =================​
​
 Peter Gutmann, pgut001@cs.auckland.ac.nz​
 October 2000​
​
[This file is frequently cited as a reference on PKI issues, when in fact it​
 was really intended as X.509 implementation notes meant mostly for​
 developers, to tell them all the things the standards leave out. If you're​
 looking for a general overview of PKI that includes most of what's in here​
 but presented in a more accessible manner, you should use "Everything you​
 never wanted to know about PKI but have been forced to find out",​
 http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf, a less technical​
 overview aimed at people charged with implementing and deploying the​
 technology. If you need to know what you're in for when you work with PKI,​
 this is definitely the one to read. Further PKI information and material can​
 be found on my home page, http://www.cs.auckland.ac.nz/~pgut001/].​
​
There seems to be a lot of confusion about how to implement and work with X.509​
certificates, either because of ASN.1 encoding issues, or because vagueness in​
the relevant standards means people end up taking guesses at what some of the​
fields are supposed to look like. For this reason I've put together these​
guidelines to help in creating software to work with X.509 certificates, PKCS​
#10 certification requests, CRLs, and other ASN.1-encoded data types.​
​
 I knew a guy who set up his own digital ID heirarchy, could​
 issue his own certificates, sign his own controls, ran SSL​
 on his servers, etc. I don't need to pay Verisign a​
 million bucks a year for keys that expire and expire. I​
 just need to turn off the friggen [browser warning]​
 messages.​
 -- Mark Bondurant, "Creating My Own Digital ID", in​
 alt.computer.security.​
​
In addition, anyone who has had to work with X.509 has probably experienced​
what can best be described as ISO water torture, which involves ploughing​
through all sorts of ISO, ANSI, ITU, and IETF standards, amendments, meeting​
notes, draft standards, committee drafts, working drafts, and other​
work-in-progress documents, some of which are best understood when held​
upside-down in front of a mirror (this has lead to people trading hard-to-find​
object identifiers and ASN.1 definitions like baseball cards - "I'll swap you​
the OID for triple DES in exchange for the latest CRL extensions"). This​
document is an attempt at providing a cookbook for certificates which should​
give you everything that you can't easily find anywhere else, as well as​

https://blog.csdn.net/wuwenlong527
https://blog.csdn.net/wuwenlong527/category_341621.html
https://so.csdn.net/so/search/s.do?q=extension&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=microsoft&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=character&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=standards&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=encoding&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=deprecated&t=blog&o=vip&s=&l=&f=&viparticle=
https://blog.csdn.net/wuwenlong527/category_341621.html

comments on what you'd typically expect to find in certificates.​
​
 Given humanity's track record with languages, you wonder​
 why we bother with standards committies​
 -- Marcus Leech​
​
Since the original X.509 spec is somewhat vague and open-ended, every​
non-trivial group which has any reason to work with certificates has to produce​
an X.509 profile which nails down many features which are left undefined in​
X.509.​
 You can't be a real country unless you have a beer and an​
 airline. It helps if you have some kind of a football​
 team, or some nuclear weapons, but at the very least you​
 need a beer.​
 -- Frank Zappa​
 And an X.509 profile.​
 -- Me​
​
The difference between a specification (X.509) and a profile is that a​
specification doesn't generally set any limitations on combinations what can​
and can't appear in various certificate types, while a profile sets various​
limitations, for example by requiring that signing and confidentiality keys be​
different (the Swedish profile requires this, and the German profile specifies​
exclusive use of certificates for digital signatures). The major profiles in​
use today are:​
​
 PKIX - Internet PKI profile.​
 FPKI - (US) Federal PKI profile.​
 MISSI - US DoD profile.​
 ISO 15782 - Banking - Certificate Management Part 1: Public Key​
 Certificates.​
 TeleTrust/MailTrusT - German MailTrusT profile for TeleTrusT (it really is​
 capitalised that way).​
 German SigG Profile - Profile to implement the German digital signature law​
 (the certificate profile SigI is particularly good, providing not just​
 the usual specification but also examples of each certificate field and​
 extension including the encoded forms).​
 ISIS Profile - Another German profile.​
 Australian Profile - Profile for the Australian PKAF (this may be the same​
 as DR 98410, which I haven't seen yet).​
 SS 61 43 31 Electronic ID Certificate - Swedish profile.​
 FINEID S3 - Finnish profile.​
 ANX Profile - Automotive Network Exchange profile.​
 Microsoft Profile - This isn't a real profile, but the software is​
 widespread enough and nonstandard enough that it constitutes a​
 significant de facto profile.​
​
 No standard or clause in a standard has a divine right of​
 existence​
 -- A Microsoft PKI architect explaining Microsoft's​
 position on standards compliance.​
​
Unfortunately the official profiles tend to work like various monotheistic​
religions where you either do what we say or burn in hell (that is, conforming​
to one profile generally excludes you from claiming conformance with any others​
unless they happen to match exactly). This means that you need to either​
create a chameleon-like implementation which can change its behaviour at a​
whim, or restrict yourself to a single profile which may not be accepted in​
some locales. There is (currently) no way to mark a certificate to indicate​
that it should be processed in a manner conformant to a particular profile,​

that it should be processed in a manner conformant to a particular profile,​
which makes it difficult for a relying party to know how their certificate will​
be processed by a particular implementation.​
​
 Interoperability Testing. Conclusion: It doesn't work​
 -- Richard Lampard, CESG, talking about UK government​
 PKI experiences​
​
Although I've tried to take into account the various "Use of this feature will​
result in the immediate demise of all small furry animals in an eight-block​
radius"-type warnings contained in various standards documents to find a lowest​
common denominator set of rules which should result in the least pain for all​
concerned if they're adhered to, the existence of conflicting profiles makes​
this a bit difficult. The idea behind the guide is to at least try to present​
a "If you do this, you should be OK" set of guidelines, rather than a "You're​
theoretically allowed to do this if you can find an implementation which​
supports it" feature list.​
​
Finally, the guide contains a (rather lengthy) list of implementation errors,​
bugs, and problems to look out for with various certificates and the related​
software in order to allow implementors to create workarounds.​
​
The conventions used in the text are:​
​
- All encodings follow the DER unless otherwise noted.​
​
- Most of the formats are ASN.1, or close enough to it to be understandable​
 (the goal was to make it easily understandable, not perfectly grammatically​
 correct). Occasionally 15 levels of indirection are cut out to make things​
 easier to understand.​
​
 The resulting type and value of an instance of use of the​
 new value notation is determined by the value (and the type​
 of the value) finally assigned to the distinguished local​
 reference identified by the keyword VALUE, according to the​
 processing of the macrodefinition for the new type notation​
 followed by that for the new value notation.​
 -- ISO 8824:1988, Annex A​
​
Certificate​
-----------​
​
Certificate ::= SEQUENCE {​
 tbsCertificate TBSCertificate,​
 signatureAlgorithm AlgorithmIdentifier,​
 signature BIT STRING​
 }​
 The goal of a cert is to identify the holder of the​
 corresponding private key, in a fashion meaningful to​
 relying parties.​
 -- Stephen Kent​
​
 By the power vested in me, I now declare this text string​
 and this bit string 'name' and 'key'. What RSA has joined,​
 let no man put asunder.​
 -- Bob Blakley​
​
The encoding of the Certificate may follow the BER rather than the DER. At​
least one implementation uses the indefinite-length encoding form for the​
SEQUENCE.​

SEQUENCE.​
​
​
TBSCertificate​
--------------​
​
The default tagging for certificates varies depending on which standard you're​
using. The original X.509v1 definition used the ASN.1 default of explicit​
tags, with X.509v3 extensions in a separate module with implicit tags. The​
PKIX definition is quite confusing because the ASN.1 definitions in the​
appendices use TAGS IMPLICIT but mix in X.509v3 definitions which use explicit​
tags. Appendix A has such a mixture of implied implicit and implied explicit​
tags that it's not really possible to tell what tagging you're supposed to use.​
Appendix B (which first appeared in draft 7, March 1998) is slightly better,​
but still confusing in that it starts with TAGS IMPLICIT, but tries to​
partially switch to TAGS EXPLICIT for some sections (for example the​
TBSCertificate has an 'EXPLICIT' keyword in the definition which is probably​
intended to signify that everything within it has explicit tagging, except that​
it's not valid ASN.1). The definitions given in the body of the document use​
implicit tags, and the definitions of TBSCertificate and and TBSCertList have​
both EXPLICIT and IMPLICIT tags present. To resolve this, you can either rely​
entirely on Appendix B with the X.509v1 sections moved into a separate section​
declared without 'IMPLICIT TAGS', or use the X.509v3 definitions. The SET​
definitions consistently use implicit tags.​
​
 Zaphod felt he was teetering on the edge of madness and​
 wondered whether he shouldn't just jump over and have done​
 with it.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
TBSCertificate ::= SEQUENCE {​
 version [0] Version DEFAULT v1(0),​
 serialNumber CertificateSerialNumber,​
 signature AlgorithmIdentifier,​
 issuer Name,​
 validity Validity,​
 subject Name,​
 subjectPublicKeyInfo SubjectPublicKeyInfo,​
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,​
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,​
 extensions [3] Extensions OPTIONAL​
 }​
​
​
Version​
-------​
​
Version ::= INTEGER { v1(0), v2(1), v3(2) }​
​
This field is used mainly for marketing purposes to claim that software is​
X.509v3 compliant (even when it isn't). The default version is v1(0), if the​
issuerUniqueID or subjectUniqueID are present than the version must be v2(1) or​
v3(2). If extensions are present than the version must be v3(2). An​
implementation should target v3 certificates, which is what everyone is moving​
towards.​
 I was to learn later in life that we tend to meet any new​
 situation by reorganizing: and a wonderful method it can be​
 for creating the illusion of progress, while producing​
 confusion, inefficiency and demoralization​
 -- Petronius Arbiter, ~60 A.D​

 -- Petronius Arbiter, ~60 A.D​
​
Note that the version numbers are one less than the actual X.509 version​
because in the ASN.1 world you start counting from 0, not 1 (although it's not​
necessary to use sequences of integers for version numbers. X.420, for​
example, is under the impression that 2 is followed by 22 rather than the more​
generally accepted 3).​
​
If your software generates v1 certificates, it's a good idea to actually mark​
them as such and not just mark everything as v3 whether it is or not. Although​
no standard actually forbids marking a v1 certificate as v3, backwards-​
compatibility (as well as truth-in-advertising) considerations would indicate​
that a v1 certificate should be marked as such.​
​
​
SerialNumber​
------------​
​
CertificateSerialNumber ::= INTEGER​
​
This should be unique for each certificate issued by a CA (typically a CA will​
keep a counter in persistent store somewhere, perhaps a config file under Unix​
and in the registry under Windows). A better way is to take the current time​
in seconds and subtract some base time like the first time you ran the​
software, to keep the numbers manageable. This has the further advantage over​
a simple sequential numbering scheme that it doesn't allow tracking of the​
number of certificates which have been signed by a CA, which can have nasty​
consequences both if various braindamaged government regulation attempts ever​
come to fruition, and because by using sequential numbers a CA ends up​
revealing just how few certs it's actually signing (at the cost of a cert per​
week, the competition can find out exactly how many certs are being issued each​
week).​
​
Although this is never mentioned in any standards document, using negative​
serial numbers is probably a bit silly (note the caveat about encoding INTEGER​
values in the section on SubjectPublicKeyInfo).​
​
Serial numbers aren't necessarily restricted to 32-bit quantitues. For example​
the RSADSI Commercial Certification Authority serial number is 0x0241000016,​
which is larger than 32 bits, and Verisign seem to like using 128 or 160-bit​
hashes as serial numbers. If you're writing certificate-handling code, just​
treat the serial number as a blob which happens to be an encoded integer (this​
is particularly important for the case of the vendors who have forgotten that​
the high bit of an integer is the sign bit, and generate negative serial​
numbers for their certificates).​
​
​
Signature​
---------​
​
This rather misnamed field contains the algorithm identifier for the signature​
algorithm used by the CA to sign the certificate. There doesn't seem to be​
much use for this field, although you should check that the algorithm​
identifier matches the one of the signature on the cert (if someone can forge​
the signature on the cert then they can also change the inner algorithm​
identifier, it's possible that this was included because of some obscure attack​
where someone who could convince (broken) signature algorithm A to produce the​
same signature value as (secure) algorithm B could change the outer,​
unprotected algorithm identifier from B to A, but couldn't change the inner​
identifier without invalidating the signature. What this would achieve is​

identifier without invalidating the signature. What this would achieve is​
unclear).​
​
Be very careful with your use of Object Identifiers. In many cases there are a​
great many OIDs available for the same algorithm, but the exact OID you're​
supposed to use varies somewhat.​
​
 You see, the conditional modifers depend on certain​
 variables like the day of the week, the number of players,​
 chair positions, things like that. [...] There can't be​
 more than a dozen or two that are pertinent.​
 -- Robert Asprin, "Little Myth Marker"​
​
Your best bet is to copy the OIDs everyone else uses and/or use the RSADSI or​
X9 OIDs (rather than the OSI or OIW or any other type of OID). OTOH if you​
want to be proprietary while still pretending to follow a standard, use OSI​
OID's which are often underspecified, so you can do pretty much whatever you​
want with things like block formatting and padding.​
​
Another pitfall to be aware of is that algorithms which have no parameters have​
this specified as a NULL value rather than omitting the parameters field​
entirely. The reason for this is that when the 1988 syntax for​
AlgorithmIdentifier was translated into the 1997 syntax, the OPTIONAL​
associated with the AlgorithmIdentifier parameters got lost. Later it was​
recovered via a defect report, but by then everyone thought that algorithm​
parameters were mandatory. Because of this the algorithm parameters should be​
specified as NULL, regardless of what you read elsewhere.​
​
 The trouble is that things *never* get better, they just​
 stay the same, only more so​
 -- Terry Pratchett, "Eric"​
​
​
Name​
----​
​
Name ::= SEQUENCE OF RelativeDistinguishedName​
​
RelativeDistinguishedName ::= SET OF AttributeValueAssertion​
​
AttributeValueAssertion ::= SEQUENCE {​
 attributeType OBJECT IDENTIFIER,​
 attributeValue ANY​
 }​
​
This is used to encode that wonderful ISO creation, the Distinguished Name​
(DN), a path through an X.500 directory information tree (DIT) which uniquely​
identifies everything on earth. Although the RelativeDistinguishedName (RDN)​
is given as a SET OF AttributeValueAssertion (AVA) each set should only contain​
one element. However you may encounter other people's certs which could​
contain more than one AVA per set, there has been a reported sighting of a​
certificate which contained more than one element in the SET.​
​
 When the X.500 revolution comes, your name will be lined​
 up against the wall and shot​
 -- John Gilmore​
 They can't be read, written, assigned, or routed. Other​
 than that, they're perfect​
 -- Marshall Rose​
​
When encoding sets with cardinality > 1, you need to take care to follow the​

When encoding sets with cardinality > 1, you need to take care to follow the​
DER rules which say that they should be ordered by their encoded values​
(although ASN.1 says a SET is unordered, the DER adds ordering rules to ensure​
it can be encoded in an unambiguous manner). What you need to do is encode​
each value in the set, then sort them by the encoded values, and output them​
wrapped up in the SET OF encoding,​
​
 First things first, but not necessarily in that order.​
 -- Dr.Who​
​
however your software really shouldn't be producing these sorts of RDN entries.​
​
In theory you don't have to use a Name for the subject name if you don't want​
to; there is a subjectAltName extension which allows use of email addresses or​
URL's. In theory if you want to do this you can make the Name an empty​
sequence and include a subjectAltName extension and mark it critical, but this​
will break a lot of implementations. Because it is possible to do this, you​
should be prepared to accept a zero-length sequence for the subject name in​
version 3 certificates. Since the DN is supposed to encode the location of the​
certificate in a DIT, having a null issuer name would mean you couldn't​
actually locate the certificate, so CAs will need to use proper DNs. The​
S/MIME certificate spec codifies this by requiring that all issuer DNs be non-​
null (so only an end-user certificate can have a null DN, and even then it's​
not really recommended), and this requirement was back-ported to the PKIX​
profile shortly before it was finalised. The reason for requiring issuer DNs​
is that S/MIME v2 and several related standards identify certificates by issuer​
and serial number, so all CA certificates must contain an issuer DN (S/MIME v3​
allows subjectKeyIdentifiers, but they're almost never used).​
​
SET provides an eminently sensible definition for DNs:​
​
 Name ::= SEQUENCE SIZE(1..5) OF RelativeDistinguishedName​
​
 RelativeDistinguishedName ::= SET SIZE(1) OF AttributeTypeAndValue​
​
 AttributeTypeAndValue ::= { OID, C | O | OU | CN }​
​
This means that when you see a SET DN it'll be in a fixed, consistent, and​
easy-to-process format (note in particular the fixed maximum size, the​
requirement for a single element per AVA, and the restriction to sensible​
element types).​
​
Note that the (issuer name, serialNumber (with a possible side order of​
issuerUniqueID, issuerAltName, and keyUsage extension)) tuple uniquely​
identifies a certificate and can be used as a key to retrieve certificates​
from an information store. The subject name alone does not uniquely identify​
a certificate because a subject can own multiple certificates.​
​
You would normally expect to find the following types of AVAs in an X.509​
certificate, starting from the top:​
​
countryName ::= SEQUENCE { { 2 5 4 6 }, StringType(SIZE(2)) }​
organization ::= SEQUENCE { { 2 5 4 10 }, StringType(SIZE(1...64)) }​
organizationalUnitName​
 ::= SEQUENCE { { 2 5 4 11 }, StringType(SIZE(1...64)) }​
commonName ::= SEQUENCE { { 2 5 4 3 }, StringType(SIZE(1...64)) }​
​
You might also find:​
​
localityName ::= SEQUENCE { { 2 5 4 7 }, StringType(SIZE(1...64)) }​

localityName ::= SEQUENCE { { 2 5 4 7 }, StringType(SIZE(1...64)) }​
stateOrProvinceName​
 ::= SEQUENCE { { 2 5 4 8 }, StringType(SIZE(1...64)) }​
​
Some profiles require at least some of these AVAs to be present, for example​
the German profile requires at least a countryName and commonName, and in some​
cases also an organization name. This is a reasonable requirement, as a​
minimum you should always include the country and common name.​
​
Finally, you'll frequently also run into:​
​
emailAddress ::= SEQUENCE { { 1 2 840 113549 1 9 1 }, IA5String }​
​
from PKCS #9, although this shouldn't be there.​
​
 I can't afford to make exceptions. Once word leaks out that​
 a pirate has gone soft, people begin to disobey you and​
 it's nothing but work, work, work all the time​
 -- The Dread Pirate Roberts, "The Princess Bride"​
​
The reason why oddball components like the emailAddress have no place in a DN​
created as per the original X.500 vision is because the whole DN is intended to​
be a strictly heirarchical construction specifying a path through a DIT.​
Unfortunately the practice adopted by many CAs of tacking on an emailAddress,​
an element which has no subordinate relationship to the other components of the​
DN, creates a meaningless mishmash which doesn't follow this hierarchical​
model. For this reason the ITU defined the GeneralName, which specifically​
allows for components such as email addresses, URL's, and other non-DN items.​
GeneralNames are discussed in "Extensions" below.​
​
Since the GeneralName provides a proper means of specifying information like​
email addresses, your software shouldn't populate DNs with these components,​
however for compatibility with legacy implementations you need to be able to​
accept existing certificates which contain odd things in the DN. Currently all​
mailers appear to be able to handle an rfc822Name in an altName, so storing it​
in the correct location shouldn't present any interoperability problems. One​
problem with email address handling is that many mailers will accept not only​
'J.Random Luser <jrandom@aol.com>' as a valid emailAddress/rfc822Name but will​
be equally happy with 'President William Jefferson Clinton <jrandom@aol.com>'.​
The former is simply invalid, but the latter can be downright dangerous because​
it completely bypasses the stated purpose of email certificates, which is to​
identify the other party in an email exchange. Both PKIX and S/MIME explicitly​
require that an rfc822Name only contain an RFC 822 addr-spec which is defined​
as local-part@domain, so the mailbox form 'Personal Name <local-part@domain>'​
isn't allowed (many S/MIME implementations don't enforce this though).​
Unfortunately X.509v3 just requires "an Internet electronic mail address​
defined in accordance with Internet RFC 822" without tying it down any further,​
so it could be either an addr-spec or a mailbox.​
​
 Okay, I'm going home to drink moderately and then pass out.​
 -- Steve Rhoades, "Married with Children"​
​
The countryName is the ISO 3166 code for the country. Noone seems to know how​
to specify non-country-aligned organisations, it's possible that 'EU' will be​
used at some point but there isn't any way to encode a non-country code​
although some organisations have tried using 'INT'. Actually noone really even​
knows what a countryName is supposed to refer to (let alone something as​
ambiguous as "locality"), for example it could be your place of birth, country​
of citizenship, country of current residence, country of incorporation, country​
where corporate HQ is located, country of choice for tax and/or jurisdictional​

issues, or a number of other possibilities (moving from countryName to​
stateOrProvinceName, people in the US military can choose a state as their​
official "residence" for tax purposes even if they don't own any property in​
that state, and politicians are allowed to run for office in one state while​
their wives claim residence and run for office in another state).​
​
The details of the StringType are discussed further down. It's a good idea to​
actually limit the string lengths to 64 characters as required by X.520​
because, although many implementations will accept longer encoded strings in​
certs, some can't manipulate them once they've been decoded by the software,​
and you'll run into problems with LDAP as well. This means residents of places​
like Taumatawhakatangihangakoauotamateaturipukakapikimaungahoronukupokai-​
whenuakitanataha are out of luck when it comes to getting X.509 certs.​
​
Comparing two DNs has its own special problems, and is dealt with in the rather​
lengthy "Comparing DNs" section below.​
​
There appears to be some confusion about what format a Name in a certificate​
should take.​
 Insufficient facts always invite danger​
 -- Spock, "Space Seed"​
​
In theory it should be a full, proper DN, which traces a path through the X.500​
DIT, eg:​
​
 C=US, L=Area 51, O=Hanger 18, OU=X.500 Standards Designers, CN=John Doe​
​
but since the DIT's usually don't exist, exactly what format the DN should take​
seems open to debate. A good guideline to follow is to organize the namespace​
around the C, O, OU, and CN attribute types, but this is directed primarily at​
corporate structures. You may also need to use ST(ate) and L(ocality) RDNs.​
Some implementations seem to let you stuff anything with an OID into a DN,​
which is not good.​
 There is nothing in any of these standards that would​
 prevent me from including a 1 gigabit MPEG movie of me​
 playing with my cat as one of the RDN components of the DN​
 in my certificate.​
 -- Bob Jueneman on IETF-PKIX​
 (There is a certificate of this form available from​
 http://www.cs.auckland.ac.nz/~pgut001/pubs/​
 {dave_ca|dave}.der, although the MPEG is limited to​
 just over 1MB)​
​
With a number of organisations moving towards the use of LDAP-based directory​
services, it may be that we'll actually see X.500 directories in our lifetime,​
​
 Well, it just so happens that your friend here is only​
 mostly dead. There's a big difference between mostly dead​
 and all dead. Now, mostly dead is slightly alive.​
 -- Miracle Max, "The Princess Bride"​
​
which means you should make an attempt to have a valid DN in the certificate.​
LDAP uses the RFC 1779 form of DN, which is the opposite endianness to the ISO​
9594 form used above:​
​
 CN=John Doe, OU=X.500 Standards Designers, O=Hanger 18, L=Area 51, C=US​
​
 There are always alternatives​
 -- Spock, "The Galileo Seven"​
​

​
In order to work with LDAP implementations, you should ensure you only have a​
single AVA per RDN (which also avoids the abovementioned DER-encoding hassle).​
​
As the above text has probably indicated, DNs don't really work - there's no​
clear idea of what they should look like, most users don't know about (and​
don't want to know about) X.500 and its naming conventions, and as a​
consequence of this the DN can end up containing just about anything. At the​
moment they seem to be heading in two main directions:​
​
 - Public CAs typically set C=CA country, O=CA name, OU=certificate type,​
 CN=user name​
 - A small subset of CAs in Europe which issue certs in accordance with​
 various signature laws and profiles with their own peculiar requirements​
 can have all sorts of oddities in the DN. You won't run into many of​
 these in the wild.​
 - A small subsets of CAs will modify the DN by adding a unique ID value to​
 the CN to make it a truly Distinguished Name. See the Bugs and​
 Peculiarities sections for more information on this.​
 - Private CAs (mostly people or organisations signing their own certs)​
 typically set any DN fields supported by their software to whatever makes​
 sense for them (some software requires all fields in the set​
 {C,O,OU,SP,L,CN} to be filled in, leading to strange or meaningless entries​
 as people try and guess what a Locality is supposed to be).​
​
Generally you'll only run into certs from public CAs, for which the general​
rule is that the cert is identified by the CN and/or email address. Some CAs​
issue certs with identical CN's and use the email address to disambiguate them,​
others modify the CN to make it unique. The accepted user interface seems to​
be to let users search on the CN and/or email address (and sometimes also the​
serial number, which doesn't seem terribly useful), display a list of matches,​
and let the user pick the cert they want. Probably the best strategy for a​
user interface which handles certs is:​
​
 if(email address known)​
 get a cert which matches the email address (any one should do);​
 elseif(name known)​
 search for all certs with CN=name;​
 if(multiple matches)​
 display email addresses for matched certs to user, let them choose;​
 else​
 error;​
​
If you need something unique to use as an identifier (for example for a​
database key) and you know your own software (or more generally software which​
can do something useful with the identifier) will be used, use an X.500​
serialNumber in a subjectAltName directoryName or use a subjectAltName​
otherName (which was explicitly created to allow user-defined identifiers).​
For internal cert lookups, encode the cert issuer and serial number as a PKCS​
#7 issuerAndSerialNumber, hash it down to a fixed size with SHA-1 (you can​
either use the full 20 bytes or some convenient truncated form like 64 bits),​
and use that to identify the cert. This works because the internal structure​
of the DN is irrelevant anyway, and having a fixed-size unique value makes it​
very easy to perform a lookup in various data structures (for example the​
random hash value generated leads to probabalistically balanced search trees​
without requiring any extra effort).​
​
​
Validity​
--------​

​
Validity ::= SEQUENCE {​
 notBefore UTCTIME,​
 notAfter UTCTIME​
 }​
​
This field denotes the time at which you have to pay your CA a renewal fee to​
get the certificate reissued. The IETF originally recommended that all times​
be expressed in GMT and seconds not be encoded, giving:​
​
 YYMMDDHHMMZ​
​
as the time encoding. This provided an unambiguous encoding because a value of​
00 seconds was never encoded, which meant that if you read a UTCTime value​
generated by an implementation which didn't use seconds and wrote it out again​
with an implementation which did, it would have the same encoding because the​
00 wouldn't be encoded.​
​
However newer standards (starting with the Defence Messaging System (DMS),​
SDN.706), require the format to be:​
​
 YYMMDDHHMMSSZ​
​
even if the seconds are 00. The ASN.1 encoding rules were in late 1996 amended​
so that seconds are always encoded, with a special note that midnight is​
encoded as ...000000Z and not ...240000Z. You should therefore be prepared to​
encounter UTCTimes with and without the final 00 seconds field, however all​
newer certificates encode 00 seconds. If you read and then write out an​
existing object you may need to remember whether the seconds were encoded or​
not in the original because adding the 00 will invalidate the signature (this​
problem is slowly disappearing as pre-00 certificates expire).​
​
A good workaround for this problem when generating certificates is to ensure​
that you never generate a certificate with the seconds set to 00, which means​
that even if other software re-encodes your certificate, it can't get the​
encoding wrong.​
​
At least one widely-used product generated incorrect non-GMT encodings so you​
may want to consider handling the "+/-xxxx" time offset format, but you should​
flag it as a decoding error nonetheless.​
​
In coming up with the worlds least efficient machine-readable time encoding​
format, the ISO nevertheless decided to forgo the encoding of centuries, a​
problem which has been kludged around by redefining the time as UTCTime if the​
date is 2049 or ealier, and GeneralizedTime if the date is 2050 or later (the​
original plan was to cut over in 2015, but it was felt that moving it back to​
2050 would ensure that the designers were either retired or dead by the time​
the issue became a serious problem, leaving someone else to take the blame).​
To decode a date, if it's UTCTime and the year is less than or equal to 49 it's​
20xx, if it's UTCTime and the year is equal to or greater than 50 it's 19xx,​
and if it's GeneralizedTime it's encoded properly (but shouldn't really be used​
for dates before 2050 because you could run into interoperability problems with​
existing software). Yuck.​
​
To make this even more fun, another spec at one time gave the cutover date as​
2050/2051 rather than 2049/2050, and allowed GeneralizedTime to be used before​
2050 if you felt you could get away with it. It's likely that a lot of​
conforming systems will briefly become nonconforming systems in about half a​
centuries time, in a kind of security-standards equivalent of the age-old​
paradox in which Christians and Moslems will end up in the other side's version​

paradox in which Christians and Moslems will end up in the other side's version​
of hell.​
 Confusion now hath made his masterpiece.​
 -- Macduff, "Macbeth", II.i.​
​
Another issue to be aware of is the problem of issuer certificates which have a​
different validity time than the subject certificates they are used to sign.​
Although this isn't specified in any standard, some software requires validity​
period nesting, in which the subject validity period lies inside the issuer​
validity period. Most software however performs simple pointwise checking in​
which it checks whether a cert chain is valid at a certain point in time​
(typically the current time). Maintaining the validity nesting requires that a​
certain amount of care be used in designing overlapping validity periods​
between successive generations of certificates in a hierarchy. Further​
complications arise when an existing CA is re-rooted or re-parented (for​
example a divisional CA is subordinated to a corporate CA). Australian and New​
Zealand readers will appreciate the significance of using the term "re-rooted"​
to describe this operation.​
​
Finally, CAs are handling the problem of expiring certificates by reissuing​
current ones with the same name and key but different validity periods. In​
some cases even CA roots have been reissued with the only different being​
extended validity periods. This can result in multiple identical-seeming​
certificates being valid at one time (in one case three certificates with the​
same DN and key were valid at once). The semantics of these certificates/keys​
are unknown. Perhaps Validity could simply be renamed to RenewalFeeDueDate to​
reflect its actual usage.​
​
An alternative way to avoid expiry problems is to give the certificate an​
expiry date several decades in the future. This is popular for CA certs which​
don't require an annual renewal fee.​
​
​
SubjectPublicKeyInfo​
--------------------​
​
This contains the public key, either a SEQUENCE of values or a single INTEGER.​
Keep in mind that ASN.1 integers are signed, so if any integers you want to​
encode have the high bit set you need to add a single zero octet to the start​
of the encoded value to ensure that the high bit isn't mistaken for a sign bit.​
In addition you are allowed at most a single 0 byte at the start of an encoded​
value (and that only when the high bit is set), if the internal representation​
you use contains zero bytes at the start you have to remove them on encoding.​
This is a bit of a nuisance when encoding signatures which have INTEGER values,​
since you can't tell how big the encoded signature will be without actually​
generating it.​
​
​
UniqueIdentifier​
----------------​
​
UniqueIdentifier ::= BITSTRING​
​
These were added in X509v2 to handle the possible reuse of subject and/or​
issuer names over time. Their use is deprecated by the IETF, so you shouldn't​
generate these in your certificates. If you're writing certificate-handling​
code, just treat them as a blob which happens to be an encoded bitstring.​
​
​
Extensions​

----------​
​
Extensions ::= SEQUENCE OF Extension​
​
Extension ::= SEQUENCE {​
 extnid OBJECT IDENTIFIER,​
 critical BOOLEAN DEFAULT FALSE,​
 extnValue OCTETSTRING​
 }​
​
X.509 certificate extensions are like a LISP property list: an ISO-standardised​
place to store crufties. Extensions can consist of key and policy information,​
certificate subject and issuer attributes, certificate path constraints, CRL​
distribution points, and private extensions.​
​
X.509v3 and the X.509v4 draft contains the ASN.1 formats for the standard V3​
Certificate, V2 CRL and V2 CRLEntry extensions. In theory you should be able​
to handle all of these, but there are large numbers of them and some may not be​
in active use, or may be meaningless in some contexts.​
​
 'It's called a shovel,' said the Senior Wrangler. 'I've​
 seen the gardeners use them. You stick the sharp end in​
 the ground. Then it gets a bit technical'​
 -- Terry Pratchett, "Reaper Man"​
​
The extensions are encoded with IMPLICIT tags, it's traditional to specify this​
in some other part of the standard which is at least 20 pages away from the​
section where the extension is actually defined (but see the comments above​
about the mixture of explicit and implicit tags in ASN.1 definitions).​
​
There are a whole series of superseded and deprecated OIDs for extensions,​
often going back through several generations. Older software and certificates​
(and buggy newer software) will still use obsolete OIDs, any new software​
should try and emit attributes tagged with the OID du jour rather than using​
deprecated OIDs.​
​
We can break extensions into two types, constraint extensions and informational​
extensions. Constraint extensions limit the way in which the key in a​
certificate, or the certificate itself, can be used. For example they may​
limit the key usage to digital signatures only, or limit the DNs for which a CA​
may issue certificates. The most common constraint extensions are basic​
constraints, key usage and extended key usage, certificate policies (modified​
by policy mappings and policy constraints), and name constraints. In contrast,​
informational extensions contain information which may or may not be useful for​
certificate users, but which doesn't limit the certificate use in any way. For​
example an informational extension may contain additional information which​
identifies the CA which issued it. The most common informational extensions​
are key identifiers and alternative names.​
​
The processing of these extensions is mostly specified in three different​
standards, which means that there are three often subtly incompatible ways to​
handle them. In theory, constraint extensions should be enforced religiously,​
however the three standards which cover certificates sometimes differ both in​
how they specify the interpretation of the critical flag, and how they require​
constraint extensions to be enforced.​
​
 We could not get it out of our minds that some subtle but​
 profoundly alien element had been added to the aesthetic​
 feeling behind the technique.​
 -- H.P.Lovecraft, "At the Mountains of Madness"​

 -- H.P.Lovecraft, "At the Mountains of Madness"​
​
The general idea behind the critical flag is that it is used to protect the​
issuing CA against any assumptions made by software which doesn't implement​
support for a particular extension (none of the X.509-related standards provide​
much of a definition for what a minimally, average, and fully compliant​
implementation needs to support, so it's something of a hit and miss​
proposition for an implementation to rely on the correct handling of a​
particular extension). One commentator has compared the various certificate​
contraints as serving as the equivalent of a Miranda warning ("You have the​
right to remain silent, you have the right to an attorney, ...") to anyone​
using the certificate. Without the critical flag, an issuer who believes that​
the information contained in an extension is particularly important has no real​
defence if the end users software chooses to ignore the extension.​
​
The original X.509v3 specification requires that a certificate be regarded as​
invalid if an unrecognised critical extension is encountered. As for the​
extension itself, if it's non-critical you can use whatever interpretation you​
choose (that is, the extension is specified as being of an advisory nature​
only). This means that if you encounter constraints which require that a key​
be used only for digital signatures, you're free to use it for encryption​
anyway. If you encounter a key which is marked as being a non-CA key, you can​
use it as a CA key anyway. The X.509v3 interpretation of extensions is a bit​
like the recommended 130 km/h speed limit on autobahns, the theoretical limit​
is 130, you're sitting there doing 180, and you're getting overtaken by​
Porsches doing about 250. The problem with the original X.509v3 definitions is​
that although they specify the action to take when you don't recognise an​
extension, they don't really define the action when you do recognise it. Using​
this interpretation, it's mostly pointless including non-critical extensions​
because everyone is free to ignore them (for example the text for the keyUsage​
extension says that "it is an advisory field and does not imply that usage of​
the key is restricted to the purpose indicated", which means that the main​
message it conveys is "I want to bloat up the certificate unnecessarily").​
​
The second interpretation of extensions comes from the IETF PKIX profile. Like​
X.509v3, this also requires that a certificate be regarded as invalid if an​
unrecognised critical extension is encountered. However it seems to imply that​
a critical extension must be processed, and probably considers non-critical​
extensions to be advisory only. Unfortunately the wording is ambiguous enough​
that a number of interpretations exist. Section 4.2 says that "CAs are​
required to support <constraint extensions>", but the degree of support is left​
open, and what non-CAs are supposed to do isn't specified. The paragraph​
which follows this says that implementations "shall recognise extensions",​
which doesn't imply any requirement to actually act on what you recognise. Even​
the term "process" is somewhat vague, since processing an extension can consist​
of popping up a warning dialog with a message which may or may not make sense​
to the user, with an optional "Don't display this warning again" checkbox. In​
this case the application certainly recognised the extension and arguably even​
processed it, but it didn't force compliance with the intent of the extension,​
which was probably what was intended by the terms "recognise" and "process".​
​
The third interpretation comes from S/MIME, which requires that implementations​
correctly handle a subset of the constraint and informational extensions.​
However, as with PKIX, "correctly handle" isn't specified, so it's possible to​
"correctly handle" an extension as per X.509v3, as per PKIX (choose the​
interpretation you prefer), or as per S/MIME, which leaves the issue open (it​
specifies that implementations may include various bits and pieces in their​
extensions, but not how they should be enforced). S/MIME seems to place a​
slightly different interpretation on the critical flag, limiting its use to the​
small subset of extensions which are mentioned in the S/MIME spec, so it's not​

small subset of extensions which are mentioned in the S/MIME spec, so it's not​
possible to add other critical extensions to an S/MIME certificate.​
​
 "But it izz written!" bellowed Beelzebub.​
 "But it might be written differently somewhere else" said​
 Crowley. "Where you can't read it".​
 "In bigger letters" said Aziraphale.​
 "Underlined" Crowley added.​
 "Twice" suggested Aziraphale.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
Finally, the waters are further muddied by CA policies, which can add their own​
spin to the above interpretations. For example the Verisign CPS, section​
2.4.3, says that "all persons shall process the extension [...] or else ignore​
the extension", which would seem to cover all the bases. Other policies are​
somewhat more specific, for example Netscapes certificate extension​
specification says that the keyUsage extension can be ignored if it's not​
marked critical, but Netscape Navigator does appear to enforce the​
basicConstraints extension in most cases.​
​
The whole issue is complicated by the fact that implementations from a large​
vendor will reject a certificate which contains critical constraint extensions,​
so that even if you interpret the critical flag to mean "this extension must be​
enforced" (rather than just "reject this certificate if you don't recognise the​
extension"), you can't use it because it will render the certificate unusable.​
These implementations provide yet another interpretation of the critical flag,​
"reject this certificate if you encounter a critical extension". The same​
vendor also has software which ignores the critical flag entirely, making the​
software essentially useless to relying parties who can't rely on it to perform​
as required (the exact behaviour depends on the software and version, so one​
version might reject a certificate with a critical extension while another​
would ignore a critical extension).​
​
 Zaphod stared at him as if expecting a cuckoo to leap out​
 of his forehead on a small spring.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
Because of this confusion, it's probably impossible to include a set of​
constraint extensions in a certificate which will be handled properly by​
different implementations. Because of problems like this, the digital​
signature laws of some countries are requiring certification of the software​
being used as part of compliance with the law, so that you can't just claim​
that your software "supports X.509v3 certificates" (everyone claims this​
whether they actually do or not), you actually have to prove that it supports​
what's required by the particular countries' laws. If you're in a country​
which has digital signature legislation, make sure the software you're using​
has been certified to conform to the legal requirements.​
​
The best interpretation of constraint extensions is that if a certificate is​
marked as an X.509v3 certificate, constraints should always be enforced. This​
includes enforcing implied settings if the extension is missing, so that a​
certificate being used in a CA role which has no basicConstraints extension​
present should be regarded as being invalid (note however the problem with​
PKIX-compliant certificates described later on). However even if one of the​
standards is reworded to precisely define extension handling, there are still​
plenty of other standards and interpretations which can be used. The only​
solution to this would be to include a critical policy extension which requires​
that all constraint extensions up and down the cert chain be enforced. Going​
back to the autobahn analogy, this mirrors the situation at the Austrian​
border, where everyone slows down to the strictly enforced speed limit as soon​

border, where everyone slows down to the strictly enforced speed limit as soon​
as they cross the border.​
​
Currently the only way to include a constraint enforcement extension is to make​
it a critical policy extension. This is somewhat unfortunate since including​
some other random policy may make the extension unrecognisable, causing it, and​
the entire certificate, to be rejected (as usual, what constitutes an​
unrecognisable extension is open to debate: if you can process all the fields​
in an extension but don't recognise the contents of one of the fields, it's up​
to you whether you count this as being unrecognisable or not).​
​
A better alternative would be to define a new extension, enforceConstraints:​
​
enforceConstraints EXTENSION ::= {​
 SYNTAX EnforceConstraintsSyntax​
 IDENTIFIED BY id-ce-enforceConstraints​
 }​
​
EnforceConstraintsSyntax ::= BOOLEAN DEFAULT FALSE​
​
This makes the default setting compatible with the current "do whatever you​
feel like" enforcement of extensions. Enforcing constraints is defined as​
enforcing all constraints contained in constraint extensions, incuding implied​
settings if the extension is missing, as part of the certificate chain​
validation process (which means that they should be enforced up and down the​
cert chain). Recognising/supporting/handling/<whatever other wording is used​
in standards> an extension is defined as processing and acting on all​
components of all fields of an extension in a manner which is compliant with​
the semantic intent of the extension.​
​
 'Where was I?' said Zaphod Beeblebrox the Fourth.​
 'Pontificating' said Zaphod Beeblebrox.​
 'Oh yes'.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
Just to mention a further complication with critical extensions, there are​
instances in which it's possible to create certificates which are always​
regarded as being invalid due to conflicts with extensions. For example a​
generation n-1 critical extension might be replaced by a generation n critical​
extension, resulting in a mixture of certs with generation n-1 extensions,​
generation n-1 and generation n extensions (for compatibility) and (eventually)​
generation n extensions only. However until every piece of software is​
upgraded, generation n-1 software will be forced to reject all certs with​
generation n extensions, even the (supposedly) backwards-compatibile certs with​
both generations of extension in them.​
​
 'Mr.Beeblebrox, sir', said the insect in awed wonder,​
 'you're so weird you should be in movies'.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
Key Usage, Extended Key Usage, and Netscape cert-type​
​
X.509 and PKIX use keyUsage and extKeyUsage to select the key to use from a​
selection of keys unless the extension is marked critical, in which case it's​
treated as a usage restriction. Microsoft claims to support key usage​
enforcement, although experimentation with implementations has shown that it's​
mostly ignored (see the entry on Microsoft bugs further on). In addition if an​
extKeyUsage extension is present, all certificates in the chain up to the CA​

extKeyUsage extension is present, all certificates in the chain up to the CA​
root must also support the same extKeyUsage (so that, for example, a general-​
purpose CA can't sign a server gated crypto certificate - the reasoning behind​
this is obvious). As it turns out though, extKeyUsage seems to be mostly​
ignored just like keyUsage. ​
​
Netscape uses keyUsage as a key selection mechanism, and uses the Netscape​
cert-type extension in a complex manner described in the Netscape certificate​
extension specification. Since the cert-type extension includes the equivalent​
of the basicConstraints CA flag, it's possible to specify some types of CA with​
the cert-type extension. If you do this, you should be careful to synchronise​
the basicConstraints CA flag with the setting of the cert-type extension​
because some implementations (you can probably guess which one) will allow a​
Netscape CA-like usage to override a non-CA keyUsage value, treating the​
certificate as if it were a CA certificate. In addition Netscape also enforces​
the same extKeyUsage chaining as Microsoft. ​
​
Unfortunately the extKeyUsage chaining interpretation is wrong according to​
PKIX, since the settings apply to the key in the certificate (ie the CA's key)​
rather than the keys in the certificates it issues. In other words an​
extKeyUsage of emailProtection would indicate that the CA's certificate is​
intended for S/MIME encryption, not that the CA can issue S/MIME certificates.​
Both of the major implementators of certificate-handling software use the​
chaining interpretation, but there also exist implementations which use the​
PKIX interpretation, so the two main camps will fail to verify the other side's​
cert chains unless they're in the (smaller) third camp which just ignores​
extKeyUsage.​
​
For keyUsage there is much disagreement over the use of the digitalSignature​
and nonRepuduation bits since there was no clear definition in X.509 of when​
the nonrepudiation flag should be used alongside or in place of the digital​
signature flag. One school of thought holds that digitalSignature should be​
used for ephemeral authentication (something which occurs automatically and​
frequently) and nonRepuduation for legally binding long-term signatures​
(something which is performed consciously and less frequently). Another school​
of thought holds that nonRepuduation should act as an additional function for​
the digitalSignature mechanism, with digitalSignature being a mechanism bit and​
nonRepuduation being a service bit. The different profiles are split roughly​
50:50 on this, with some complicating things by specifying that both bits​
should be set but the certificate not be used for one or the other purpose.​
Probably the best usage is to use digitalSignature for "digital signature for​
authentication purposes" and nonRepudiation for "digital signature for​
nonrepudiation purposes".​
​
 "I think" said the Metatron, "that I shall need to seek​
 further instructions".​
 "I alzzo" said Beelzebub.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
In terms of profiles, MISSI and FPKI follow the above recommendation, PKIX uses​
nonRepudiation strictly for nonrepudiation and digitalSignature for everything​
else, ISO uses digitalSignature for entity authentication and nonRepudiation​
strictly for nonrepudiation (leaving digital signatures for data authentication​
without nonrepudiation hanging), and others use something in between. When​
this issue was debated on PKI lists in mid-1998, over 100 messages were​
exchanged without anyone really being able to uncontestably define what​
digitalSignature and nonRepudiation really signified. The issue is further​
confused by the fact that noone can agree on what the term "nonRepudiation"​
actually means, exemplified by a ~200-message debate in mid-1999 which couldn't​
reach any useful conclusion.​
​

​
 He had attached the correct colour-coded wires to the​
 correct pins; he'd checked that it was the right amperage​
 fuse; he'd screwed it all back together. So far, no​
 problems. He plugged it into the socket. Then he switched​
 the socket on. Every light in the house went out.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
Although everyone has their own interpretation, a good practical definition is​
"Nonrepudiation is anything which fails to go away when you stop believing in​
it". Put another way, if you can convince a user that it isn't worth trying to​
repudiate a signature then you have nonrepudiation. This can take the form of​
having them sign a legal agreement saying they won't try to repudiate any of​
their signatures, giving them a smart card and convincing them that it's so​
secure that any attempt to repudiate a signature generated with it would be​
futile, threatening to kill their kids, or any other method which has the​
desired effect. One advantage (for vendors) is that you can advertise just​
about anything as providing nonrepudiation, since there's sure to be some​
definition which matches whatever it is you're doing (there are​
"nonrepudiation" schemes in use today which employ a MAC using a secret shared​
between the signer and the verifier, which must be relying on a particularly​
creative definition of nonrepudiation).​
​
 Bei ihnen auf dem Server muesste irgendwie ein Key​
 rumliegen, den ich mit Netscape vermutlich erzeugt hab.​
 Wenn da mein Name drin steht, dann wird er das schon sein.​
 Koennten sie mir den zertifizieren?​
 -- endergone Zwiebeltuete​
​
 One might as well add a "crimeFree" (CF) bit with usage​
 specified as 'The crimeFree bit is asserted when subject​
 public key is used to verify digital signatures for​
 transactions that are not a perpetration of fraud or other​
 illegal activities'​
 -- Tony Bartoletti on ietf-pkix​
​
 I did have the idea that we mandate that CAs MUST set this​
 bit randomly whenever a keyUsage extension is present, just​
 to stop people who argue that its absence has a meaning.​
 -- Stephen Farrell on ietf-pkix​
​
​
Basic Constraints​
​
This is used to specify whether a certificate is a CA certificate or not. You​
should always mark this critical, because otherwise some implementations will​
ignore it and allow a non-CA certificate to act as a CA.​
​
Alternative Names​
​
The subject and issuer alternative names are used to specify all the things​
which aren't suitable for a DN, which for most purposes means practically​
everything of any use on the Internet (X.509v3 defines the alternative names​
(or, more specifically, the GeneralName type) for use in specifying identifying​
information which isn't suited for, or part of, a DN). This includes email​
addresses, URL's for web pages, server addresses, and other odds and ends like​
X.400 and EDI addresses. There's also a facility to include your postal​
address, physical address, phone, fax and pager numbers, and of course the​
essential MPEG of your cat.​
​

​
The alternative names can be used for certificate identification in place of​
the DNs, however the exact usage is somewhat unclear. In particular if an​
altName is used for certificate chaining purposes, there's a roughly 50/50​
split of opinion as to whether all the items in the altName must match or any​
one of the items must match. For example if an altName contains three URL's in​
the issuer and one in the client (which matches one of the issuer URL's), noone​
really knows whether this counts as a valid altName match or not. Eventually​
someone will make a decision one way or the other, probably the S/MIME​
standards group who are rather reliant on altNames for some things (the S/MIME​
group have requested that the PKIX group make DNs mandatory in order to allow​
proper certificate chaining, and the S/MIME specs themselves require DNs for​
CAs). Until this is sorted out, it's not a good idea to rely on altNames for​
chaining.​
​
This confusion is caused by the fact that an altName is serving two conflicting​
purposes. The first of these is to provide extra information on the​
certificate owner which can't be specified in the DN, including things like​
their phone number, email address, and physical address. The second is to​
provide an alternative to the ITU-managed (or, strictly speaking, non-managed)​
DN space. For example a DNS name or IP address, which falls outside the range​
of ITU (non-)management, is controlled by the IETF, which has jurisdiction over​
the name space of the Internet-related altName components. However since an​
altName can only specify a collection of names with a single critical attribute​
to cover all of them, there's no way to differentiate between something which​
really is critical (for example an rfc822Name being used in place of DN) and​
something which is merely present to provide extra details on the certificate​
owner (an rfc822Name being provided as a contact address). One IETF draft​
overloaded this even further by forcing authorityInfoAccess semantics onto some​
of the altName components.​
​
This ambiguity is complicated by the presence of other attributes like path​
processing constraints. For example does an included or excluded subtree​
constraint containing a DN cover the subjectName DN, the altName directoryName,​
or both?. More seriously, since a subjectName and altName directoryName have​
the same form, it's possible to specify an identical DN in two different ways​
across an issuer and subject cert, leading to the same problem described below​
in the name constraints section in which it's possible to evade constraint​
checks by using alternative encodings for the same item.​
​
The solution to this problem would be to split the altName into two new​
extensions, a true altName which provides a single alternative to the​
subjectName (for example a single dNSName or rfc822Name) and which is used only​
when the subject DN is empty, and a collection of other information about the​
subject which follows the current altName syntax but which is used strictly for​
informational purposes. The true altName provides a single alternative for the​
subjectName, and the informational altName provides any extra identification​
information which the subject may want to include with their certificate.​
​
A different (and much uglier) solution is to try and stuff everything​
imaginable into a DN. The problem with this approach is that it completely​
destroys any hope of interoperability with directories, especially X.500​
directories which rely on search arguments being predefined as a type of​
filter. Unless you have this predefined filter, you can't easily search the​
directory for a match, so it's necessary to have some limits placed on the​
types of names (or schemas in X.500-speak) which are acceptable.​
Unfortunately the "stuff everything into a DN" approach violates this​
principle, making the result un-searchable within a directory, which voids the​
reason for having the DN in the first place.​
​

Certificate Policies and Policy Mappings and Constraints​
​
The general idea behind the certificate policies extension is simple enough, it​
provides a means for a CA to identify which policy a certificate was issued​
under. This means that when you check a certificate, you can ensure that each​
certificate in the chain was issued under a policy you feel comfortable with​
(certain security precautions taken, vetting of employees, physical security of​
the premises, no loud ties, that sort of thing). The certificatePolicies​
extension (in its minimal form) provides a means of identifying the policy a​
certificate was issued under, and the policyMappings extension provides a means​
of mapping one policy to another (that is, for a CA to indicate that policy A,​
under which it is issuing a certificate, is equivalent to policy B, which is​
required by the certificate user).​
​
Unfortunately on top of this there are qualifiers for the certificatePolicies​
and the policyConstraints extension to muddy the waters. As a result, a​
certificate policy often consists of a sequence of things identified by unknown​
object identifiers, each with another sequence of things identified by​
partially known, partially unknown object identifiers, with optional extra​
attachments containing references to other things which software is expected to​
know about by magic or possibly some form of quantum tunnelling.​
​
 Marx Brothers fans will possibly recall the scene in "A Day​
 at the Races" in which Groucho, intending to put his money​
 on Sun-up, is induced instead to buy a coded tip from Chico​
 and is able to establish the identity of the horse only, at​
 some cost in terms of time and money, by successive​
 purchases from Chico of the code book, the master code​
 book, the breeders' guide and various other works of​
 reference, by the end of which the race is over, Sun-up​
 having won.​
 -- Unknown, forwarded by Ed Gerck to cert-talk​
​
This makes it rather difficult to make validity decisions for a certificate​
which have anything more complex than a basic policyIdentifier present.​
​
Because of this, you should only use a single policyIdentifier in a​
certificate, and forgo the use of policy qualifiers and other odds and ends.​
Currently noone but Verisign appears to use these, the presence of these​
qualifiers in the PKIX profile may be related to the presence of Verisign in​
the PKIX profiling process.​
​
Name Constraints​
​
The name constraints are used to constrain the certificates' DN to lie inside​
or outside a particular subtree, with the excludedSubtrees field taking​
precedence over the permittedSubtrees field. The principal use for this​
extension is to allow balkanization of the certificate namespace, so that a CA​
can restrict the ability of any CAs it certifies to issue certificates outside​
a very restricted domain.​
​
Unfortunately if the X.500 string encoding rules are followed, it's always​
possible to avoid the excludedSubtrees by choosing unusual (but perfectly​
valid) string encodings which don't appear to match the excludedSubtrees (see​
the section on string encodings for more details on this problem). Although​
PKIX constrains the string encodings to allow the nameConstraints to function,​
it's a good idea to rely on permittedSubtrees rather than excludedSubtrees for​
constraint enforcement (actually since virtually nothing supports this​
extension, it's probably not a good idea to rely too much on either type of​
constraint, but when it is supported, use permitted rather than excluded​

constraint, but when it is supported, use permitted rather than excluded​
subtrees).​
​
Subject and Authority Key Identifiers​
​
These are used to provide additional identification information for a​
certificate. Unfortunately it's specified in a somewhat complex manner which​
requires additional ASN.1 constraints or text to explain it, you should treat​
it as if it were specified with the almost-ASN.1 of:​
​
AuthorityKeyIdentifier ::= CHOICE {​
 keyIdentifier [0] OCTET STRING,​
 authorityCert [1] GeneralNames, authoritySerialNumber [2] INTEGER​
 }​
​
X.509v3 allows you to use both types of identifier, but other standards and​
profiles either recommend against this or explicitly disallow it, allowing only​
the keyIdentifier. Various profiles have at various times required the use of​
the SHA-1 hash of the public key (whatever that constitutes), the SHA-1 hash of​
the subjectPublicKeyInfo data (for some reason this has to be done *without*​
the tag and length at the start), the SHA-1 hash of the subjectPublicKey (again​
without the tag, length, and unused bits portion of the BIT STRING, which​
leaves just the raw public key data but omits the algorithm identifier and​
parameters so that two keys for different algorithms with different parameters​
which happen to share the same public key field end up with the same hash), a​
64-bit hash of the subjectPublicKeyInfo (presumably with the tag and length), a​
60-bit hash of the subjectPublicKey (again with tag and length) with the first​
four bits set to various values to indicate MISSI key types, and some sort of​
unique value such as a monotonically increasing sequence. Several newer​
profiles have pretty much given up on this and simply specify "a unique value".​
RFC 2459 also allows "a monotomically increasing sequence of integers", which​
is a rather bad move since the overall supply of unique small integers is​
somewhat limited and this scheme will break as soon as a second CA decides to​
issue a cert with a "unique" subjectKeyIdentifier of the same value.​
​
To balance the problems caused by this mess of conflicting and incompatible​
standards, it appears that most implementations either ignore the keyIdentifier​
entirely or don't bother decoding it, because in 1997 and 1998 a widely-used CA​
accidentally issued certificates with an incorrect encoding of the​
keyIdentifier (it wasn't even valid ASN.1 data, let alone X.509-conformant​
ASN.1) without anyone noticing. Although a few standards require that a​
keyIdentifier be used, its absence doesn't seem to cause any problems for​
current implementations.​
​
Recommendation: Don't even try and decode the authorityKeyIdentifier field,​
 just treat everything inside the OCTET STRING hole as an opaque blob.​
 Given that most current implementations seem to ignore this extension,​
 don't create certificate chains which require it to be processed in order​
 for the chaining to work.​
​
The claimed reason for using the keyIdentifier rather than the​
issuerAndSerialNumber is because it allows a certificate chain to be re-rooted​
when an intermediate CA changes in some manner (for example when its​
responsibilities are handed off from one department in an organisation to​
another). If the certificate is identified through the keyIdentifier, no​
nameConstraints are present, the certificate policies are identical or mapped​
from one to the other, the altNames chain correctly, and no policyConstraints​
are present, then this type of re-rooting is possible (in case anyone missed​
the sarcasm in there, the gist is that it's highly unlikely to work).​
​

Other Extensions​
​
There are a wide variety of other extensions defined in various profiles.​
These are in effect proprietary extensions because unless you can track down​
something which recognises them (typically a single-vendor or small-group-of-​
vendors product), you won't be able to do much with them - most software will​
either ignore them completely or reject the certificate if the extension is​
marked critical and the software behaves as required. Unless you can mandate​
the use of a given piece of certificate-processing software which you've​
carefully tested to ensure it processes the extension correctly, and you can​
block the use of all other software, you shouldn't rely on these extensions.​
Obviously if you're in a closed, carefully controlled environment (for example​
a closed shop EDI environment which requires the use of certain extensions such​
as reliance limits) the use of specialised extensions isn't a problem, but​
otherwise you're on your own.​
​
In addition to the use of other people's extensions, you may feel the need to​
define your own. In short if you're someone other than Microsoft (who can​
enforce the acceptance of whatever extensions they feel like), don't do it.​
Not only is it going to be practically impossible to find anything to support​
them (unless you write it yourself), but it's also very easy to stuff all sorts​
of irrelevant, unnecessary, and often downright dangerous information into​
certificates without thinking about it. The canonical example of something​
which has no place in a certificate is Microsoft's cAKeyCertIndexPair​
extension, which records the state of the CA software running on a Windows 2000​
machine at the time the certificate was generated (in other words it offloads​
the CA backup task from the machine's administrator to anyone using one of the​
certificates).​
 Only wimps use tape backup: _real_ men just upload their​
 important stuff on ftp, and let the rest of the world​
 mirror it.​
 -- Linus Torvalds​
​
The canonical example of a dangerous certificate extension is one which​
indicates whether the owner is of legal age for some purpose (buying​
alcohol/driving/entry into nightclubs/whatever). Using something like a​
drivers license for this creates a booming demand for forged licenses which, by​
their very nature, are difficult to create and tied to an individual through a​
photo ID. Doing the same thing with a certificate creates a demand for those​
over the age limit to make their keys (trivially copied en masse and not tied​
to an individual) available to those under the age limit, or for those under​
the age limit to avail themselves of the keys in a surreptitious manner. The​
fact that the borrowed key which is being used to buy beer or rent a porn movie​
can also be used to sign a legally binding contract or empty a bank account​
probably won't be of concern until it's too late. This is a good example of​
the law of unintended consequences in action.​
​
 If scientists can be counted on for anything, it's for​
 creating unintended consequences.​
 -- Michael Dougan​
​
A related concern about age indicators in certificates, which was one of the​
many nails in X.500's coffin, is the fact that giving a third party the​
information needed to query a certificate directory in order to locate, for​
example, all teenage girls in your localityName, probably wouldn't be seen as a​
feature by most certificate holders. Similar objections were made to the use​
of titles in DNs, for example a search on a title of "Ms" would have allowed​
someone to locate all single women in their localityName, and full-blown X.500​
would have provided their home addresses and probably phone numbers to boot.​
Until early 1999 this type of extension only existed as a hypothetical case,​

Until early 1999 this type of extension only existed as a hypothetical case,​
but it's now present as a mandatory requirement in at least one digital​
signature law, which also has as a requirement that all CAs publish their​
certificates in some form of openly-accessible directory.​
​
 I saw, and I heard an eagle, flying in mid heaven, saying​
 with a loud voice, "Woe! Woe! Woe for those who dwell on​
 the earth"​
 -- Revelations 8:15​
​
​
Character Sets​
--------------​
​
Character strings are used in various places (most notably in DNs), and are​
encumbered by the fact that ASN.1 defines a whole series of odd subsets of​
ASCII/ISO 646 as character string types, but only provides a few peculiar and​
strange oddball character encodings for anything outside this limited character​
range.​
 The protruding upper halves of the letters now appear to​
 read, in the local language, "Go stick your head in a pig",​
 and are no longer illuminated, except at times of special​
 celebration.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
To use the example of DNs, the allowed string types are:​
​
DirectoryString ::= CHOICE {​
 teletexString TeletexString (SIZE (1..maxSize)),​
 printableString PrintableString (SIZE (1..maxSize)),​
 bmpString BMPString (SIZE (1..maxSize)),​
 universalString UniversalString (SIZE (1..maxSize))​
 }​
​
The easiest one to use, if you can get away with it, is IA5String, which is​
basically 7-bit ASCII (including all the control codes), but with the dollar​
sign potentially replaced with a "currency symbol". A more sensible​
alternative is VisibleString (aka ISO646String), which is IA5String without the​
control codes (this has the advantage that you can't use it to construct macro​
viruses using ANSI control sequences). In the DirectoryString case, you have​
to make do with PrintableString, which is one of the odd ASCII/ISO 646 subsets​
(for example you can't encode an '@', which makes it rather challenging to​
encode email addresses).​
​
Beyond that there is the T.61/TeletexString, which can select different​
character sets using escape codes (this is one of the aforementioned "peculiar​
and strange oddball encodings"). The character sets are Japanese Kanji (JIS C​
6226-1983, set No. 87), Chinese (GB 2312-80, set No. 58), and Greek, using​
shifting codes specified in T.61 or the international version, ISO 6937​
(strictly speaking T61String isn't defined in T.61 but in X.680, which defines​
it by profiling ISO 2022 character set switching). Some of the characters have​
a variable-length encoding (so it takes 2 bytes to encode a character, with the​
interpretation being done in a context-specific manner). The problem isn't​
helped by the fact that the T.61 specification has changed over the years as​
new character sets were added, and since the T.61 spec has now been withdrawn​
by the ITU there's no real way to find out exactly what is supposed to be in​
there (but see the previous comment on T.61 vs T61String - a T61String isn't​
really a T.61 string). Even using straight 8859-1 in a T61String doesn't​
always work, for example the 8859-1 character code for the Norwegian OE​

(slashed O) is defined using a T.61 escape sequence which, if present in a​
certificate, may cause a directory to reject the certificate.​
​
 And then there came the crowning horror of all - the​
 unbelievable, unthinkable, almost unmentionable thing.​
 -- H.P.Lovecraft, "The Statement of Randolph Carter"​
​
For those who haven't reached for a sick bag yet, one definition of T61String​
is given in ISO 1990 X.208 which indicates that it contains registered​
character sets 87, 102 (a minimalist version of ASCII), 103 (a character set​
with the infamous "floating diacritics" which means things like accented​
characters are encoded as "<add an accent to the next character> + <character>"​
rather than with a single character code), 106 and 107 (two useless sets​
containing control characters which noone would put in a name), SPACE + DELETE.​
The newer ITU-T 1997 and ISO 1998 X.680 adds the character sets 6, 126, 144,​
150, 153, 156, 164, 165, and 168 (the reason for some of these additions is​
because once a character set is registered it can never change except by​
"clarifying" it, which produces a completely new character set with a new​
number (as with sex, once you make a mistake you end up having to support it​
for the rest of your life)). In fact there are even more definitions of​
T61String than that: The original CCITT 1984 ASN.1 spec defined T61String by​
reference to a real T.61 recommendation (from which finding the actual​
permitted characters is challenging, to put it mildly), then the ISO 1986 spec​
defined them by reference to the international register, then the CCITT 1988​
spec changed them again (the ISO 1990 spec described above may be identical to​
the CCITT 1988 one), and finally they were changed again for ISO/ITU-T 1994​
(this 1994 spec may again be the same as ITU-T 1997 and ISO 1998). I'm not​
making this up!​
 The disciples came to him privately, saying, "Tell us, what​
 is the sign of your coming, and of the end of the world?"​
 [...] "You will hear of wars and rumors of wars; there will​
 be famines, plagues, and earthquakes in various places; the​
 sun will be darkened, the moon will not give her light, the​
 stars will fall from the sky, the powers of the heavens​
 will be shaken; certificates will be issued with floating​
 diacritics in their DNs; and then the end will come".​
 -- Matthew 24 (mostly)​
​
The encoding for this mess is specified in X.209 which indicates that the​
default character sets at the start of a string are 102, 106 and 107, although​
in theory you can't really make this assumption without the appropriate escape​
sequences to invoke the correct character set. The general consensus amoung​
the X.500/ISODE directory crowd is that you assume that set 103 is used by​
default, although Microsoft and Netscape had other ideas for their LDAPv2​
products. In certificates, the common practice seems to be to use straight​
latin-1, which is set numbers 6 and 100, the latter not even being an allowed​
T61String set.​
 There are those who will say Danforth and I were utterly​
 mad not to flee for our lives after that; since our​
 conclusions were now completely fixed, and of a nature I​
 need not even mention to those who have read my account so​
 far.​
 -- H.P.Lovecraft, "At the Mountains of Madness"​
​
Next are the BMPString and UniversalString, with BMPString having 16-bit​
characters (UCS-2) and UniversalString having 32-bit characters (UCS-4), both​
encoded in big-endian format. BMPString is a subset of UniversalString, being​
the 16-bit character range in the 0/0 plane (ie the UniversalString characters​
in which the 16 high bits are 0), corresponding to straight ISO 10646/Unicode​
characters. The ASN.1 standard says that UniversalString should only be used​

characters. The ASN.1 standard says that UniversalString should only be used​
if the encoding possibilities are constrained, it's better to avoid it entirely​
and only use BMPString/ISO 10646/Unicode.​
​
However, there is a problem with this: at the moment few implementors know how​
to handle or encode BMPStrings, and people have made all sorts of guesses as to​
how Unicode strings should be encoded: with or without Unicode byte order marks​
(BOMs), possibly with a fixed endianness, and with or without the terminating​
null character.​
 I might as well be frank in stating what we saw; though at​
 the time we felt that it was not to be admitted even to​
 each other. The words reaching the reader can never even​
 suggest the awfulness of the sight itself.​
 -- H.P.Lovecraft, "At the Mountains of Madness"​
​
The correct format for BMPStrings is: big-endian 16-bit characters, no Unicode​
byte order marks (BOMs), and no terminating null character (ISO 8825-1 section​
8.20).​
​
An exception to this is PFX/PKCS #12, where the passwords are converted to a​
Unicode BMPString before being hashed. However both Netscape and Microsoft's​
early implementations treated the terminating null characters as being part of​
the string, so the PKCS #12 standard was retroengineered to specify that the​
null characters be included in the string.​
​
A final string type which is presently only in the PKIX profile but which​
should eventually appear elsewhere is UTF-8, which provides a means of encoding​
7, 8, 16, and 32-bit characters into a single character string. Since ASN.1​
already provides character string types which cover everything except some of​
the really weird 32-bit characters which noone ever uses,​
​
 It was covered in symbols that only eight other people in​
 the world would have been able to comprehend; two of them​
 had won Nobel prizes, and one of the other six dribbled a​
 lot and wasn't allowed anything sharp because of what he​
 might do with it.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
the least general encoding rule means that UTF-8 strings will practically never​
be used. The original reason they were present in the PKIX profile is because​
of an IETF rule which required that all new IETF standards support UTF-8, but a​
much more compelling argument which recently emerged is that, since most of the​
other ASN.1 character sets are completely unusable, UTF-8 would finally breathe​
a bit of sanity into the ASN.1 character set nightmare. Unfortunately, because​
it's quite a task to find ASN.1 compilers (let alone certificate handling​
software) which supports UTF-8, you should avoid this string type for now. PKIX​
realised the problems which would arise and specified a cutover date of 1​
January 2004 for UTF-8 use. Some drafts have appeared which recommend the use​
of RFC 2482 language tags, but these should be avoided since they have little​
value (they're only needed for machine processing, if they appear in a text​
string intended to be read by a human they'll either understand it or they​
won't and a language tag won't help). In addition UTF-8 language tags are huge​
(about 30 bytes) due to the fact that they're located out in plane 14 in the​
character set (although I don't have the appropriate reference to hand, plane​
14 is probably either Gehenna or Acheron), so the tag would be much larger than​
the string being tagged in most cases.​
​
One final problem with UTF-8 is that it shares some of the T.61 string problems​
in which it's possible for a malicious encoder to evade checks on strings​
either by using different code points which produce identical-looking​

either by using different code points which produce identical-looking​
characters when displayed or by using suboptimal encodings (in ASN.1 terms,​
non-distinguished encodings) of a code point. They are aided in this by the​
standard, which says (page 47, section 3.8 of the Unicode 3.0 standard) that​
"when converting from UTF-8 to a Unicode scalar value, implementations do not​
need to check that the shortest encoding is being used. This simplifies the​
conversion algorithm". What this means is that it's possible to encode a​
particular character in a dozen different ways in order to evade a check which​
uses a straight byte-by-byte comparison as specified in RFC 2459. Although​
some libraries such as glibc 2.2 use "safe" UTF-8 decoders which will reject​
non-distinguished encodings, it's not a good idea to assume that everyone does​
this.​
​
Because of these problems, the SET designers produced their own alternative,​
SETString, for places were DNs weren't required for compatibility purposes.​
The design goals for the SETString were to both provide the best coverage of​
ASCII and national-language character sets, and also to minimise implementation​
pain. The SETString type is defined as:​
​
SETString ::= CHOICE {​
 visibleString VisibleString (SIZE (1..maxSIZE)),​
 bmpString BMPString (SIZE (1..maxSIZE))​
 }​
​
This provides complete ASCII/ISO 646 support using single byte characters, and​
national language support through Unicode, which is in common use by industry.​
​
In addition the SET designers decided to create their own version of the​
DirectoryString which is a proper subset of the X.500 version. The initial​
version was just an X.500 DirectoryString with a number of constraints applied​
to it, but just before publication this was changed to:​
​
DirectoryString ::= CHOICE {​
 printableString PrintableString (SIZE(1..maxSIZE)),​
 bmpString BMPString (SIZE(1..maxSIZE))​
 }​
 You must unlearn what you have learned.​
 -- Yoda​
​
It was felt that this improved readablility and interoperability (and sanity).​
T61String was never seriously considered in the design, and UniversalString​
with its four-byte characters had no identifiable industry support and required​
too much overhead. If you want to produce certs which work for both generic​
X.509 and SET, then using the SET version of the DirectoryString is a good​
idea. It's trivial to convert an ISO 8859-1 T61String to a BMPString and back​
(just add/subtract a 0 byte every other byte).​
​
MISSI also subsets the string types, allowing only PrintableString and​
T61String in DNs.​
​
When dealing with these character sets you should use the "least inclusive" set​
when trying to determine which encoding to use. This means trying to encode as​
PrintableString first, then T61String, and finally BMPString/UniversalString.​
SET requires that either PrintableStrings or BMPStrings be used, with​
TeletexStrings and UniversalStrings being forbidden.​
​
From this we can build the following set of recommendations:​
​
- Use PrintableString if possible (or VisibleString or IA5String if this is​
 allowed, because it's rather more useful than PrintableString).​
- If you use a T61String (and assuming you don't require SET compliance), avoid​

- If you use a T61String (and assuming you don't require SET compliance), avoid​
 the use of anything involving shifting and escape codes at any cost and just​
 treat it as a pure ISO 8859-1 string. If you need anything other than​
 8859-1, use a BMPString.​
- If it won't go into one of the above, try for a BMPString.​
- Avoid UniversalStrings.​
​
Version 7 of the PKIX draft dropped the use of T61String altogether (probably​
in response to this writeup :-), but this may be a bit extreme since the​
extremely limited character range allowed by PrintableString will result in​
many simple strings blowing out to BMPStrings, which causes problems on a​
number of systems which have little Unicode support.​
​
In 2004, you can switch to UTF-8 strings and forget about this entire section​
of the guide.​
 I saw coming out of the mouth of the dragon, and out of the​
 mouth of the beast, and out of the mouth of the false​
 prophet, three unclean spirits, something like frogs; for​
 they are spirits of demons, performing signs​
 -- Biblical explanation of the origins of character set​
 problems, Revelations 16:13-14, recommended​
 rendition: Diamanda Galas, The Plague Mass.​
​
​
Comparing DNs​
-------------​
​
This is an issue which is so problematic that it requires a section of its own​
to cover it fully. According to X.500, to compare a DN:​
​
- The number of RDNs must match.​
- RDNs must have the same number of AVAs.​
- Corresponding AVAs must match for equality:​
 - Leading and trailing spaces are ignored.​
 - Multiple internal spaces are treated as a single internal space.​
 - Characters (not code points, which are a particular encoding of a​
 character) are matched in a case-insensitive manner.​
​
As it turns out, this matching is virtually impossible to perform (more​
specifically, it is virtually impossible to accurately compare two DNs for​
equivalence).​
 This, many claim, is not merely impossible but clearly​
 insane, which is why the advertising executives of the star​
 system of Bastablon came up with this quote: 'If you've​
 done six impossible things this morning, why not round it​
 off with breakfast at Milliways, the Restaurant at the End​
 of the Universe?'.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
The reason for this is that, with the vast number of character sets, encodings,​
and alternative encodings (code points) for the same character, and the often​
very limited support for non-ASCII character sets available on many systems, it​
isn't possible to accurately and portably compare any RDNs other than those​
containing one of the basic ASCII string types. The best you can probably do​
is to use the strategy outlined below.​
​
First, check whether the number of RDNs is equal. If they match, break up the​
DNs into RDNs and check that the RDN types match. If they also match, you need​
to compare the text in each RDN in turn. This is where it gets tricky.​

to compare the text in each RDN in turn. This is where it gets tricky.​
​
 He walked across to the window and suddenly stumbled​
 because at that moment his Joo-Janta 200 Super-Chromatic​
 Peril Sensitive sunglasses had turned utterly black.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
First, take both strings and convert them to either ASCII (ISO646String) or​
Unicode (BMPString) using the "least inclusive" rule. This is quite a task in​
itself, because several implementations aren't too picky about what they'll put​
into a string, and will stuff T61String characters into a PrintableString, or​
(more commonly) Unicode characters into a T61String or anything into a​
BMPString. Finding a T61String in a PrintableString or an 8-bit character set​
string in a BMPString is relatively easy, but the best guess you can take at​
detecting a Unicode string in a T61String is to check whether either the string​
length is odd or all the characters are ASCII or ASCII with the high bit set.​
If neither are true, it might be a Unicode string disguised as a T61String.​
​
Once this is done, you need to canonicalise the strings into a format in which​
a comparison can be done, either to compare strings of different types (eg​
8-bit character set or DBCS string to BMPString) or strings with the same type​
but different encodings (eg two T61Strings using alternative encodings). To​
convert ASCII-as-Unicode to ASCII, just drop the odd-numbered bytes. Converting​
a T61String to Unicode is a bit more tricky. Under Windows 95 and NT, you can​
use MultiByteToWideChar(), although the conversion will depend on the current​
code page in use. On systems with widechar support, you can use mbstowcs()​
directly if the widechar size is the same as the BMPString char size (which it​
generally isn't), otherwise you need to first convert the string to a widechar​
string with mbstowcs() and then back down again to a BMPString, taking the​
machine endianness into account. Again, the behaviour of mbstowcs() will​
depend on the current locale in use. If the system doesn't have widechar​
support, the best you can do is a brute-force conversion to Unicode by hoping​
it's ISO 8859-1 and adding a zero byte every other byte.​
​
Now that you might have the strings in a format where they can be compared, you​
can actually try and compare them. Again, this often ends up as pure guesswork​
if the system doesn't support the necessary character sets, or if the​
characters use weird encodings which result in identical characters being​
located at different code points.​
​
First, check the converted character sets: If one is Unicode and the other​
isn't, then the strings probably differ (depending on how well the​
canonicalisation step went). If the types are the same, strip leading,​
trailing, and repeated internal spaces from the string, which isn't as easy as​
it sounds since there are several possible code points allocated to a space.​
​
Once you've had a go at stripping spaces, you can try to compare the strings.​
If the string is a BMPString then under Windows NT (but not Windows 95) you can​
use CompareString(), with the usual caveat that the comparison depends on the​
current locale. On systems which support towlower() you can extract the​
characters from the string into widechars (taking machine endianness into​
account) and compare the towlower() forms, with the usual caveat about locale​
and the added problem that towlower() implementations vary from bare-bones​
(8859-1 only under Solaris, HPUX, AIX) to vague (Unicode under Win95, OSF/1).​
If there's no support for towlower(), the best you can do is use the normal​
tolower() if the characters have a high byte of zero (some systems will support​
8859-1 for tolower(), the worst which can happen is that the characters will be​
returned unchanged), and compare the code points directly if it isn't an 8-bit​
value.​
 Zaphods skin was crawling all over his body as if it was​

 Zaphods skin was crawling all over his body as if it was​
 trying to get off.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
Finally, if it's an ASCII string, you can just use a standard case-insensitive​
string comparison function.​
​
As you can see, there's almost no way to reliably compare two RDN elements. In​
particular, no matter what you do:​
​
- Some malicious users will deliberately pass DN checks with weird encodings.​
- Some normal users will accidentally fail DN checks with weird encodings.​
​
This becomes an issue when certain security checks depend on a comparison of​
DNs (for example with excluded subtrees in the Name Constraints extension)​
because it's possible to create multiple strings which are displayed​
identically to the user (especially if you know which platform and/or software​
to target) assuming they get displayed at all, but which compare as different​
strings. If you want to be absolutely certain about DN comparisons, you might​
need to set a certificate policy of only allowing PrintableStrings in DNs,​
because they're the only ones which can be reliably compared.​
​
​
PKCS #10​
--------​
​
According to the PKCS #10 spec, the attributes field is mandatory, so if it's​
empty it's encoded as a zero-length field. The example however assumes that if​
there are no attributes, the field shouldn't be present, treating it like an​
OPTIONAL field. A number of vendors conform to the example rather than the​
specification, but just to confuse the issue RSADSI, who produced PKCS #10,​
regard things the other way around, with the spec being right and the example​
being wrong. The most obvious effect of this is that TIPEM (which was the only​
available toolkit for PKCS#10 for a long time) follows the spec and does it​
"wrong (sense #2)", whereas more recent independant implementations follow the​
example and do it "wrong (sense #1)".​
​
Unfortunately it's difficult to handle certificate requests correctly and be​
lenient on decoding. Because a request could be reencoded into DER before​
checking the signature, funny things can happen to your request at the remote​
end if the two interpretations of PKCS #10 differ. Because of this confusion,​
you should be prepared to accept either version when decoding, but at the​
moment it's not possible to provide any recommendation for encoding. When​
encountering a particularly fascist parser which isn't aware of the PKCS #10​
duality, it may be necessary to submit two versions of the request to determine​
which one works.​
 No, no. Yes. No, I tried that. Yes, both ways. No, I​
 don't know. No again. Are there any more questions?​
 -- Xena, "Been There, Done That"​
​
PKCS #10 also dates from the days of X.509v1 and includes references to​
obsolete and deprecated objects and data formats. PKCS #6 extended​
certificates are a workaround for the abscence of certificate extensions in​
X.509v1 and shouldn't be used at all, and it's probably a good idea to avoid​
the use of PKCS #9 extended attributes as well (some certification request​
protocols bypass the use of PKCS #9 by wrapping extra protocol layers​
containing PKCS #9 elements around the outside of PKCS #10). Instead, you​
should use of the CMMF draft, which defines a new attribute identified by the​
OID {pkcs-9 14}, with a value of SEQUENCE OF Extension which allows X.509v3​

OID {pkcs-9 14}, with a value of SEQUENCE OF Extension which allows X.509v3​
attributes to be encoded into a PKCS #10 certification request. The complete​
encoding used to encode X.509v3 extensions into a PKCS #10 certification​
request is therefore:​
​
 [0] IMPLICIT SET OF { -- attributes from PKCS #10​
 SEQUENCE { -- Attribute from X.501​
 OBJECT IDENTIFIER, -- type, {pkcs-9 14}​
 SET OF { -- values​
 SEQUENCE OF { -- ExtensionReq from CMMF draft​
 <X.509v3 extensions>​
 }​
 }​
 }​
 }​
​
As of late 1998, virtually all CAs ignore this information and at best add a​
few predefined extensions based on the options selected on the web page which​
was used to trigger the certification process. There are one or two​
implementations which do support it, and these provide a convenient means of​
specifying attributes for a certificate which don't involve kludges via HTML​
requests. Microsoft started supporting something like it in mid-1999, although​
they used their own incompatible OID in place of the PKCS #9 one to ensure non-​
compatibility with any other implementation (the extensions are encoded in the​
standard format, they're just identified in a way which means nothing else can​
read them).​
​
Unfortunately since PKCS #10 doesn't mention X.509v3 at all, there's no clear​
indication of what is and isn't valid as an attribute for X.509v3, but common​
sense should indicate what you can and can't use. For example a subjectAltName​
should be treated as a valid attribute, a basicConstraint may or may not be​
treated as valid depending on the CA's certification policy, and an​
authorityKeyIdentifier would definitely be an invalid attribute.​
​
SET provides its own version of PKCS #10 which uses a slightly different​
encoding to the above and handles the X.509v3 extensions keyUsage,​
privateKeyUsagePeriod (whose use is deprecated by PKIX for some reason),​
subjectAltName, and the SET extensions certificateType, tunneling, and​
additionalPolicy. Correctly handling the SET extensions while at the same time​
avoiding Microsoft's broken extensions which look very similar (see the "Known​
Bugs/Peculiarities" section) provides a particularly entertaining exercise for​
implementors.​
​
​
ASN.1 Design Guidelines​
-----------------------​
​
This section contains some guidelines on what I consider good ASN.1 style.​
This was motivated both by the apparent lack of such guidelines in existing​
documents covering ASN.1, and by my seeing the ASN.1 definition of the X.400​
ORAddress (Originator/Recipient Address). Although there are a number of​
documents which explain how to use ASN.1, there doesn't seem to be much around​
on ASN.1 style, or at least nothing which is easily accessible. Because of​
this I've noted down a few guidelines on good ASN.1 style, tuned towards the​
kind of ASN.1 elements which are used in certificate-related work. In most​
cases I'll use the X.400 ORAddress as an example of bad style (I usually use​
PFX for this since it's such a target-rich environment, but in this case I'll​
make an exception). The whole ORAddress definition is far too long to include​
here (it requires pages and pages of definitions just to allow the encoding of​
the equivalent of an email address), but I'll include excerpts where required.​

​
 If you can't be a good example, then you'll just have to be​
 a horrible warning.​
 -- Catherine Aird​
​
Addendum: Recently I discovered a source of ASN.1 even worse than PFX and​
 X.400, even worse than the pathological ASN.1 I created for the April 1 GUPP​
 RFC, which was meant to be the most awful I could come up with. It can be​
 found in the NIST "Government Smart Card Interoperability Specification", in​
 case anyone's interested (look at sections 6 and 7). Truly impressive.​
​
To start off, keep your structure as simple as possible. Everyone always says​
this, but when working with ASN.1 it's particularly important because the​
notation gives you the freedom to design incredibly complicated structures​
which are almost impossible to work with.​
​
 Bud, if dynamite was dangerous do you think they'd sell it​
 to an idiot like me?​
 -- Al Bundy, "Married with Children"​
​
Look at the whole ORAddress for an example.​
​
 What we did see was something altogether different, and​
 immeasurably more hideous and detestable. It was the​
 utter, objective embodiment of the fantastic novelists​
 'thing that should not be'.​
 -- H.P.Lovecraft, "At the Mountains of Madness"​
​
This includes provisions for every imaginable type of field and element which​
anyone could conceivably want to include in an address. Now although it's easy​
enough to feed the whole thing into an ASN.1 compiler and produce an enormous​
chunk of code which encodes and decodes the whole mess, it's still necessary to​
manually generate the code to interpret the semantic intent of the content.​
This is a complex and error-prone process which isn't helped by the fact that​
the structure contains dozens of little-understood and rarely-used fields, all​
of which need to be handled correctly by a compliant implementation. Given the​
difficulty of even agreeing on the usage of common fields in certificate​
extensions, the problems which will be raised by obscure fields buried fifteen​
levels deep in some definition aren't hard to imagine.​
​
ASN.1 *WHAM* is not *WHAM* COBOL *WHAM* *WHAM* *WHAM*. The whole point of an​
abstract syntax notation is that it's not tied to any particular representation​
of the underlying data types. An extreme example of reverse-engineering data​
type dependancy back into ASN.1 is X9.42's:​
​
 OCTET STRING SIZE(4) -- (Big-endian) Integer​
​
Artificially restricting an ASN.1 element to fall within the particular​
limitations of the hardware you're using creates all sorts of problems for​
other users, and for the future when people decide that 640K isn't all the​
memory anyone will ever need. The entire point of ASN.1 is that it not be tied​
to a particular implementation, and that users not have to worry about the​
underlying data types. It can also create ambiguous encodings which void the​
DER guarantee of identical encodings for identical values: Although the​
ANSI/SET provision for handling currencies which may be present in amounts​
greater than 10e300 (requiring the amtExp10 field to extend the range of the​
ASN.1 INTEGER in the amount field) is laudable, it leads to nondeterministic​
encodings in which a single value can be represented in a multitude of ways,​
making it impossible to produce a guaranteed, repeatable encoding.​
​

​
Careful with that tagging Eugene! In recent ASN.1 work it seems to have become​
fashionable to madly tag everything which isn't nailed down, sometimes two or​
three times recursively for good measure (see the next point).​
​
 The entire set of PDU's are defined using an incredible​
 amount of gratuitous and unnecessary tagging. Were the​
 authors being paid by the tag for this?​
 -- Peter Gutmann on ietf-pkix​
​
For example consider the following ORAddress ExtensionAttribute:​
​
 ExtensionAttribute ::= SEQUENCE {​
 extension-attribute-type [0] INTEGER,​
 extension-attribute-value [1] ANY DEFINED BY extension-attribute-type​
 }​
​
(this uses the 1988 ASN.1 syntax, more recent versions change this somewhat).​
Both of the tags are completely unnecessary, and do nothing apart from​
complicating the encoding and decoding process. Another example of this​
problem are extensions like authorityKeyIdentifier, cRLDistributionPoints, and​
issuingDistributionPoint which, after several levels of nesting, have every​
element in a sequence individually tagged even though, since they're all​
distinct, there's no need for any of the tags.​
​
Another type of tagging is used for the ORAddress BuiltInStandardAttributes:​
​
 BuiltInStandardAttributes ::= SEQUENCE {​
 countryName [APPLICATION 1] CHOICE { ... } OPTIONAL,​
 ...​
 }​
​
Note the strange nonstandard tagging - even if there's a need to tag this​
element (there isn't), the tag should be a context-specific tag and not an​
application-specific one (this particular definition mixes context-specific and​
application-specific tags apparently at random). For tagging fields in​
sequences or sets, you should always use context-specific tags.​
​
Speaking of sequences and sets, if you want to specify a collection of items in​
data which will be signed or otherwise authenticated, use a SEQUENCE rather​
than a SET, since the encoding of sets causes serious problems under the DER.​
You can see the effect of this in newer PKCS #7 revisions, which substitute​
SEQUENCE almost everywhere where the older versions used a SET because it's far​
easier to work with the former even though what's actually being represented is​
really a SET and not a SEQUENCE.​
​
If you have optional elements in a sequence, it's always possible to eliminate​
the tag on the first element (provided it's not itself tagged), since it can be​
uniquely decoded without the tag. For example consider privateKeyUsagePeriod:​
​
 PrivateKeyUsagePeriod :: = SEQUENCE {​
 notBefore [0] GeneralizedTime OPTIONAL,​
 notAfter [1] GeneralizedTime OPTIONAL​
 }​
​
The first tag is unnecessary since it isn't required for the decoding, so it​
could be rewritten:​
​
 PrivateKeyUsagePeriod :: = SEQUENCE {​
 notBefore GeneralizedTime OPTIONAL,​

 notAfter [0] GeneralizedTime OPTIONAL​
 }​
​
saving an unneeded tag.​
​
Because of the ability to specify arbitrarily nested and redefined elements in​
ASN.1, some of the redundancy built into a definition may not be immediately​
obvious. For example consider the use of a DN in an IssuingDistributionPoint​
extension, which begins:​
​
 IssuingDistributionPoint ::= SEQUENCE {​
 distributionPoint [0] DistributionPointName OPTIONAL,​
 ...​
 }​
​
 DistributionPointName ::= CHOICE {​
 fullName [0] GeneralNames,​
 ...​
 }​
​
 GeneralNames ::= SEQUENCE OF GeneralName​
​
 GeneralName ::= CHOICE {​
 ...​
 directoryName [4] Name,​
 ...​
 }​
​
 Name ::= CHOICE {​
 rdnSequence RDNSequence​
 }​
​
 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName​
​
 RelativeDistinguishedName ::= SET OF AttributeTypeAndValue​
​
 [It] was of a baroque monstrosity not often seen outside​
 the Maximegalon Museum of Diseased Imaginings.​
 -- Douglas Adams, "The Restaurant at the End of the​
 Universe"​
​
Once we reach AttributeTypeAndValue we finally get to something which contains​
actual data - everything before that point is just wrapping.​
​
Now consider a typical use of this extension, in which you encode the URL at​
which CA information is to be found. This is encoded as:​
​
SEQUENCE { [0] { [0] { SEQUENCE { [6] "http://.." } } } }​
​
All this just to specify a URL!​
​
 It looks like they were trying to stress-test their ASN.1​
 compilers.​
 -- Roger Schlafly on stds-p1363​
​
 It smelled like slow death in there, malaria, nightmares.​
 This was the end of the river alright.​
 -- Captain Willard, "Apocalypse Now"​
​
Unfortunately because of the extremely broad definition used (a SEQUENCE OF​

Unfortunately because of the extremely broad definition used (a SEQUENCE OF​
GeneralName can encode arbitrary quantities of almost anything imaginable, for​
example you could include the contents of an entire X.500 directory in this​
extension), producing the code to correctly process every type of field and​
item which could occur is virtually impossible, and indeed the semantics for​
many types of usage are undefined (consider how you would use a physical​
delivery address or a fax number to access a web server).​
​
Because of the potential for creating over-general definitions, once you've​
written down the definition in its full form, also write it out in the​
compressed form I've used above, and alongside this write down the encoded form​
of some typical data. This will very quickly show up areas in which there's​
unnecessary tagging, nesting, and generality, as the above example does.​
​
An extreme example of the misuse of nesting, tagging, and generality is the​
ORName, which when fully un-nested is:​
​
 ORName ::= [APPLICATION 0] SEQUENCE { [0] { SEQUENCE OF SET OF​
 AttributeTypeAndValue OPTIONAL } }​
​
(it's not even possible to write all of this on a single line). This uses​
unnecessary tagging, nonstandard tagging, and unnecessary nesting all in a​
single definition.​
 It will founder upon the rocks of iniquity and sink​
 headfirst to vanish without trace into the seas of​
 oblivion.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
The actual effect of the above is pretty close to:​
​
 ORName = Anything​
​
Another warning sign that you've constructed something which is too complex to​
be practical is the manner in which implementations handle its encoding. If​
you (or others) are treating portions of an object as a blob (without bothering​
to encode or decode the individual fields in it) then that's a sign that it's​
too complex to work with. An example of this is the policyQualifiers portion​
of the CertificatePolicies extension which, in the two implementations which​
have so far come to light which actually produce qualifiers, treat them as a​
fixed, opaque blob with none of the fields within it actually being encoded or​
decoded. In this case the entire collection of qualifiers could just as easily​
be replaced by a BOOLEAN DEFAULT FALSE to indicate whether they were there or​
not.​
​
Another warning sign that something is too complex is when your definition​
requires dozens of paragraphs of accompanying text and/or extra constraint​
specifications to explain how the whole thing works or to constrain the usage​
to a subset of what's specified. If it requires four pages of explanatory text​
to indicate how something is meant to work, it's probably too complex for​
practical use.​
 No matter how grandiose, how well-planned, how apparently​
 foolproof an evil plan, the inherent sinfulness will by​
 definition rebound upon its instigators.​
 -- Neil Gaiman and Terry Pratchett, "Good Omens"​
​
Finally, stick to standard elements and don't reinvent your own way of doing​
things. Taking the ORAddress again, it provides no less than three different​
incompatible ways of encoding a type-and-value combination for use in different​
parts of the ORAddress. The standard way of encoding this (again using the​
simpler 1988 syntax) is:​

​
 Attribute ::= SEQUENCE {​
 type OBJECT IDENTIFIER,​
 value ANY DEFINED BY type​
 }​
​
The standard syntax for field names is to use biCapitalised words, with the​
first letter in lowercase, for example:​
​
 md5WithRSAEncryption​
 certificateHold​
 permittedSubtrees​
​
Let's take an example. Say you wanted to design an extension for yet another​
online certificate validation protocol which specifies a means of submitting a​
certificate validity check request. This is used so a certificate user can​
query the certificate issuer about the status of the certificate they're using.​
A first attempt at this might be:​
​
 StatusCheck ::= SEQUENCE {​
 statusCheckLocations [0] GeneralNames​
 }​
​
Eliminating the unnecessary nesting and tagging we get:​
​
 StatusCheck ::= GeneralNames​
​
However taking a typical encoding (a URL) we see that it comes out as:​
​
 StatusCheck ::= SEQUENCE { [6] "http://..." }​
​
In addition the use of a SEQUENCE OF GeneralName makes the whole thing far to​
vague to be useful (someone would be perfectly within their rights to specify a​
pigeon post address using this definition, and I don't even want to get into​
what it would require for an implementation to claim it could "process" this​
extension). Since it's an online check it only really makes sense to do it via​
HTTP (or at least something which can be specified through a URL), so we​
simplify it down again to:​
​
 StatusCheck ::= SEQUENCE OF IA5String -- Contains a URL​
​
We've now reached an optimal way of specifying the status check which is easily​
understandable by anyone reading the definition, and doesn't require enormous​
amounts of additional explanatory text (what to do with the URL and how to​
handle the presence of multiple URL's is presumably specified as part of the​
status-check protocol - all we're interested in is how to specify the​
location(s) at which the status check is performed).​
​
​
base64 Encoding​
---------------​
​
Many programs allow certificate objects to be encoded using the base64 format​
popularised in PEM and MIME for transmission of binary data over text-only​
channels. The format for this is:​
​
-----BEGIN <object name>-----​
<base64-encoded data>​
-----END <object name>-----​
​

​
Unfortunately there is some disagreement over what <object name> should be for​
objects other than certificates (there's no standard for implemetations to be​
non-compliant with). Everyone seems to agree that for certificates it's​
'CERTIFICATE' (SSLeay can also accept 'X509 CERTIFICATE'). For certificate​
requests, it's generally 'NEW CERTIFICATE REQUEST', although SSLeay can also​
generate 'CERTIFICATE REQUEST' and Microsoft creates an undocumented blob which​
is nothing like a certificate request while still giving it the certificate​
request header. CRLs are so rare that I haven't been able to collect a large​
enough sample to get a consensus, but 'CRL' would seem to be the logical choice​
(SSLeay uses 'X509 CRL', matching 'X509 CERTIFICATE'). Finally, if you see 'PGP​
...' then you've got the wrong kind of object.​
​
The number of dashes around the text must be exactly five.​
​
 ... then shalt thou count to three, no more, no less.​
 Three shalt be the number thou shalt count, and the number​
 of the counting shalt be three. Four shalt thou not count,​
 neither count thou two, excepting that thou then proceed to​
 three. Five is right out.​
 -- Monty Python and the Holy Grail​
​
There are three further object types which aren't covered yet, attribute​
certificates (which are too new to be used), and Netscape cert sequences and​
PKCS #7 cert chains (which are degenerate signed data objects). The logical​
choice for these would be 'ATTRIBUTE CERTIFICATE', 'NETSCAPE CERTIFICATE​
SEQUENCE' and 'PKCS7 CERTIFICATE CHAIN'.​
​
Recommendation: When encoding objects, for certificates use 'BEGIN​
 CERTIFICATE', for attribute certificates use 'BEGIN ATTRIBUTE CERTIFICATE',​
 for cert requests use 'BEGIN NEW CERTIFICATE REQUEST', for CRLs use 'BEGIN​
 CRL', for Netscape certificate sequences use 'BEGIN NETSCAPE CERTIFICATE​
 SEQUENCE', and for PKCS #7 certificate chains use 'BEGIN PKCS7 CERTIFICATE​
 CHAIN'. When decoding objects, don't make any assumptions about what you​
 might find for <object name> - it's easiest to just look for 'BEGIN' and​
 then work out what's in there from the decoded object.​
​
​
Known Bugs/Peculiarities​
------------------------​
​
The following list of issues cover problems and areas to be aware of in X.509​
implementations and related data objects from different vendors. The coverage​
extends to objects related to X.509 such as private keys and encrypted/signed​
data. This section is not intended as a criticism of different vendors, it is​
merely an list of issues which people should be aware of when attempting to​
write interoperable software. If vendors or users are aware of fixes for these​
problems, could they please notify me of what was fixed, and when or in which​
version it occurred.​
​
One general comment about certificates is that, although you are allowed to​
deconstruct them and then re-encode them, the fact that there are so many​
incorrectly encoded certificates around means that the re-encoded certificates​
will fail their signature check. For this reason it is strongly advised that​
you always keep a copy of the original on hand rather than trying to recreate​
it from its components as they are stored internally by your software.​
​
An Post​
​
 An Post certificates include an enormously long (nearly four times the​

 An Post certificates include an enormously long (nearly four times the​
 maximum allowed size) legal disclaimer in the certificate policy extension​
 (the certificate contains as much legal disclaimer as all other data​
 combined).​
​
Bankgate​
​
 Bankgate certificates specify the country as "INT", which isn't a valid​
 country name (presumably it's meant to be either "International" or​
 "Internet", but as it's used now it means "Limbo").​
​
Belsign​
​
 The Belsign CA incorrectly encodes PKCS #7 certificate chains using a zero-​
 length set of certificates or CRLs if there are none present instead of​
 omitting the field which should contain them. Since the field is declared as​
 OPTIONAL, it should be omitted if it is empty.​
​
BTG​
​
 BTG certificates contain incorrectly encoded bit strings in key/certificate​
 usage extensions.​
​
CDSA​
​
 CDSA uses a peculiar deprecated DSA OID which appeared in an early,​
 incomplete version of SDN.702 but vanished in later versions (this OID also​
 appears in the German PKI profile). CDSA also doesn't recognise the​
 recommended X9.57 dsaWithSHA1 OID, causing it to reject DSA certificates​
 which use it.​
​
CompuSource​
​
 This CA has a root cert which has the UTCTime encoded without the seconds​
 (see the section "Validity" above), newer versions encode the time with the​
 seconds. This isn't an error since the accepted encoding was changed in​
 mid-1996, merely something to be aware of.​
​
COST​
​
 The lengths of some of the fields in CRLs are broken. Specifically, the​
 lengths of some sequences are calculated incorrectly, so if your code merely​
 nods at things like SET and SEQUENCE tags and lengths as they whiz past and​
 then works with the individual fields it'll work, but if it tries to work​
 with the length values given (for example making sure the lengths of the​
 components of a sequence add up correctly) then it'll break. The sequence​
 lengths are longer than the amount of data in the sequence, the COST code may​
 be adding the lengths of the elements of the sequence incorrectly (it's a bit​
 hard to tell what's going wrong. Basically the CRLs are broken). This was​
 supposed to have been fixed, but there still appear to be problems with CRLs​
 (?).​
​
CRLs​
​
 Some CRLs which contain extensions (which are only valid in v2 CRLs) are​
 marked as v1 CRLs because they don't have a version number field present.​
 These CRLs are (in theory) invalid, but your software should be prepared to​
 encounter them.​
​
DAP​
​

​
 X.500 directories using DAP return BER-encoded certificates since the DAP​
 PDU's are BER encoded. This leads to many certificates failing their​
 signature check when they are re-encoded using the DER because they use​
 incorrect or unexpected encodings. This problem generally requires hacking​
 the directory software to kludge the encoding, since many certificates can't​
 survive the re-encoding process.​
​
Deutsches Forschungsnetz (DFN)​
​
 The DFN CA used the SecuDE software until late-1998, see the SecuDE entry for​
 the quirks present in certificates generated with this software. These​
 certificates expired at the end of 1998, current certificates are generated​
 using OpenSSL.​
​
Digicert​
​
 (Based on the certificate peculiarities this CA uses the same software as​
 Sweden Post, but some of the quirks of the Sweden Post certificates aren't​
 present so it has its own entry)​
​
 The subjectKeyIdentifier is encoded in a variety of ways ranging in length​
 from 1 to 8 bytes. In CA certs the subjectKeyIdentifier is the same as the​
 authorityKeyIdentifier (which is valid, but odd) and consists of a text​
 string identifying the CA key (this isn't explicitly disallowed because of​
 the confusion over what's really meant to be in there but it isn't really​
 what's supposed to be in there either).​
​
 CA certs include policy mappings which specify the same issuer and subject​
 domain policy (this is known as a tautology mapping).​
​
Diginotar​
​
 End entity certs tend to be issued with a keyUsage specifying every possible​
 type of key usage, including ones which the algorithm being used is incapable​
 of.​
​
Digital Signature Trust​
​
 The certificate policy contains a longer-than-allowed legal disclaimer,​
 although not quite as excessive as the An Post one. Just to make sure you​
 don't miss it, the certificate includes the whole thing a second time as a​
 Netscape comment extension.​
​
 End entity certs tend to be issued with a keyUsage specifying every possible​
 type of key usage, including ones which the algorithm being used is incapable​
 of (since this CA operates under the strict Utah law it's possible that this​
 takes precedence over the inability of the RSA algorithm to perform Diffie-​
 Hellman key agreement).​
​
Digitrust Hellas​
​
 The Digitrst Hellas CA incorrectly encodes bit strings in key/certificate​
 usage extensions.​
​
DNs with UniqueIDs​
​
 Given that, in practice, Distinguished Names aren't, some organisations which​
 really require unique names have tried to use unique identifiers as part of​
 whatever's used as the DN in order to make it Distinguished. Unfortunately​

 whatever's used as the DN in order to make it Distinguished. Unfortunately​
 many applications can't handle multi-AVA RDNs, and those which can generally​
 won't display them to the user, making the use of DN components like​
 dnQualifiers impossible since all the user sees is a collection of certs​
 which all appear to have the same DN. As a result, some organisations modify​
 the DN by appending a unique identifier value to it. Examples of these​
 organisations are the US DoD (a very large and highly distributed​
 organisation which needs unique ID's) and AlphaTrust (which specialises in​
 certificates used in transactions which are legally binding regardless of the​
 state of digital signature legislation).​
​
Entrust​
​
 This was formerly a Nortel division, for notes on earlier versions of the​
 software see the entry for Nortel. Because of their origins, Entrust-​
 specific extensions and attributes are still identified with NSN (Nortel​
 Secure Network) object identifiers.​
​
 The Entrust demo web CA encodes liability statements in the issuer DN, making​
 them unusable with X.500/LDAP directories. It also issues certificates with​
 a zero-duration validity (start time == end time), limiting their usefulness​
 somewhat.​
​
 Something identified as 'V3.0c' encodes the outer certificate using the BER​
 instead of the DER (which is unusual but legal), however it also omits the​
 final end-of-contents octets (which isn't). Some of the inner components are​
 also encoded using the BER (which isn't allowed). This has been fixed in the​
 4.0 release.​
​
 The same software populates the certificate with multiple generations of​
 extensions (for example it contains multiple copies of​
 authorityKeyIdentifier, keyUsage, and cRLDistributionPoints extensions of​
 different levels of deprecation). Luckily it doesn't mark any of its​
 extensions as critical, avoiding the mutual-exclusion problem documented in​
 the section on extensions.​
​
 The extension which identifies V3.0c contains a GeneralString, which is​
 perfectly legal but may come as a considerable surprise to some decoding​
 software (GeneralStrings get even weirder than the other ASN.1 types, and​
 aren't used in anything certificate-related).​
​
Estonian CLO CA​
Estonian National PCA​
Estonian IOC CA​
Estonian Piirivalveamet CA​
Estonian Politsei CA​
​
 These CAs identify RSA public keys in certificates by a peculiar deprecated​
 X.500 OID for RSA (2 5 8 1 1).​
​
 The Estonian National CA encodes some DN components as PrintableString's​
 containing illegal characters. I guess the Estonian ASN.1 Politsei will have​
 to look at this.​
​
 These CAs appear to be using the same software, possibly SecuDE, so they may​
 exhibit the same DN encoding bug as the Estonian National CA (I only have one​
 cert from each so it's hard to check this).​
​
First Data​
​
 First Data's CA root certificate is (according to the extKeyUsage extension)​

 First Data's CA root certificate is (according to the extKeyUsage extension)​
 used for their SSL server, in SSL clients, and for email encryption.​
​
GeneralName​
​
 Some implementations incorrectly encode the iPAddress (yes, it really is​
 capitalised like that; ASN.1 is bigger than the Internet) as a dotted address​
 rather than a 4-byte (soon to become 16 byte) OCTET STRING, so you might​
 encounter "123.124.125.126" instead of the correct 0x7B7C7D7E.​
​
GIP-CPS​
​
 The software used in the French healthcare card project incorrectly encodes​
 cRLDistributionPoints, encoding the fullName as if it were specified with​
 [0] EXPLICIT GeneralNames, so that the final encoding is [0] + SEQUENCE +​
 GeneralName rather than [0] + GeneralName.​
​
GTE​
​
 Older versions of GTE's software encoded UTCTimes without the seconds (see​
 the section "Validity" above), newer versions encode the time with the​
 seconds. This isn't an error since the accepted encoding was changed in​
 mid-1996, merely something to be aware of.​
​
HBCI​
​
 The German Home Banking Computer Interface specification contains some​
 unusual requirements for certificates. Signatures are created by signing the​
 raw, unpadded RIPEMD-160 hash of the data. Similarly, RSA encryption is​
 performed by encrypting raw, unpadded content-encryption keys. This provides​
 no semantic security (that is, it's trivial to determine whether a given​
 plaintext corresponds to the ciphertext), and has other problems as well.​
 The IEEE P1363 standard provides further thoughts on this issue.​
​
IBM​
​
 IBM's web CA uses the same peculiar deprecated DSA OID as CDSA and JDK.​
 Since it's based on IBM's Java CryptoFramework it probably ended up in the CA​
 via its use in the JDK.​
​
ICE-TEL​
​
 Early ICE-TEL CRLs are broken, consisting of various portions of full CRLs.​
 See the entry for SECUDE for the explanation, this has been fixed in the​
 ICE-TEL successor project ICE-CAR.​
​
IPSEC​
​
 IPSEC more or less assumes the use of X.509 certificates, however the​
 companies implementing it are usually in the VPN business rather than the PKI​
 business and tend to see certificates as a means to an end rather than an end​
 in itself. As a result, the state of certificate handling in IPSEC in​
 mid-1999 is something of a free-for-all, with certificates containing​
 whatever seems to work. For example some IPSEC implementations may place​
 identification information in the subjectName, some ignore the subjectName​
 and use the altName, and some use (even require) both. In general, you​
 shouldn't make any assumptions about what you'll encounter in certificates​
 designed for or created by IPSEC implementations.​
​
JDK/Java​

JDK/Java​
​
 JDK 1.1 issues DSA certificates with a signature OID of dsaWithSHA,​
 1.3.14.3.2.13, but the hash algorithm used is SHA-1. The OID should be​
 dsaWithSHA1 1.3.14.3.2.27. Since noone ever seems to use SHA, a workaround​
 is to always assume SHA-1 even if the OID says SHA (which is also what the​
 JDK folks are banking on). JDK also uses the peculiar deprecated DSA OID 1 3​
 14 3 2 12 which appeared in an early, incomplete version of SDN.702 but​
 vanished in later versions (CDSA does this as well, God knows where they're​
 getting these from). These strange OIDs are duplicated in other Java​
 software as well. Apparently these OIDs arise from RSADSI's BSAFE 3.0, which​
 is the crypto toolkit which underlies many of these implementations.​
​
Keywitness​
​
 Keywitness encodes an email address as a PrintableString as part of a DN​
 component with an unknown OID registered to Keywitness. This encoding is​
 invalid since a PrintableString can't contain an '@' character.​
​
 Boolean values are encoded using a non-DER encoding.​
​
LDAP V2/QUIPU​
​
 Some implementations will do strange things when storing signed items. Either​
 the client or the server may modify the objects (for example by uppercasing​
 parts of DNs, or changing time fields based on their interpretation of UTC,​
 or dropping seconds in time fields), which changes the resulting DER encoding​
 and causes the signature check to fail.​
​
Microsoft​
​
 [Microsoft splits development along product lines rather than functionality,​
 so it's not uncommon to find a bug repeated over multiple products from​
 different teams, or to find a bug which has been fixed in one product​
 reappear in another. Because of this the following descriptions don't​
 usually identify a particular product because it's often a nontrivial​
 exercise identifying in which locations the problems occur]​
​
 Earlier versions of MSIE encoded the emailAddress of a PKCS #10 request​
 incorrectly. If the string doesn't fit into the range acceptable for a​
 PrintableString it produces a UniversalString (with 32-bit wide characters).​
 Since a PrintableString doesn't include an '@', you always end up with​
 UniversalStrings. The correct type should be IA5String.​
​
 MS software will often generate components with UniversalStrings in places​
 where they shouldn't really occur. According to MS, this was necessary​
 because BMPStrings weren't allowed in DirectoryStrings until October 1997,​
 which if true would require another entry in this list, "Some MS software​
 erroneously produced BMPStrings before it was permitted in October 1997". It​
 also seems to randomly use T61Strings where a PrintableString should be used​
 (there's no discernable pattern to this). This was fixed in MSIE 4.01 (but​
 not in other MS software as far as I can tell), where it uses either​
 PrintableString or BMPString (skipping T61String completely).​
​
 The same software will dump multiple AVAs into a single RDN, this is most​
 probably an encoding bug since the AVAs consist of a random jumble of​
 components with nothing in common.​
​
 Some Microsoft software will generate negative values about 50% of the time​
 whenever it encodes anything as an INTEGER because it ignores the fact that​

 the top bit of an integer is the sign bit (this is still occurring in​
 programs released as recently as early 1998).​
​
 When MSIE stores certificates, it recodes some components (specifically the​
 various time stamps) which don't include seconds so that they now include​
 seconds, which means that the signatures in the certificates are no longer​
 valid. The altered encoding is in fact the correct one, but it's probably​
 not worth altering the certificate to the correct form if it means breaking​
 the signature on it. A workaround for this problem (mentioned in the​
 "Validity" section of this document) is to ensure you never generate a​
 certificate with the seconds field set to 0.​
​
 MS software enforces validity period nesting for certificates, which can​
 cause certificates which are valid everywhere else to appear invalid when​
 loaded into a MS product.​
​
 Although various MS programs give the impression of handling certificate​
 policies, they only have a single hardcoded policy which is the Verisign CPS.​
 To see an example of this, create a certificate with a policy of (for​
 example) "This policy isn't worth the paper it's not written on" and view the​
 cert using Outlook Express. What's displayed will be the Verisign CPS.​
​
 The entire AuthentiCode certification framework collapsed on 1 July 1997 when​
 the AuthentiCode CA certificates expired (most people never noticed this due​
 to stealth upgrades of security components when other products were​
 installed). Microsoft issued an update (AuthentiCode 2.0) which includes a​
 partially-documented timestamping mechanism which is supposed to allow​
 signatures to be updated in some manner. Creating certificates with a​
 lifetime of over four decades (see below) is probably also intended to stop​
 this problem from recurring.​
​
 The MakeCert certificate-generation program gives certificates a default​
 validity of over 40 years (!!!). This creates three problems: firstly,​
 implementations which use the ANSI/ISO C time_t type for dates (which most​
 implementations do) will, for certificates generated after late 1997, be​
 unable to check the validity period. Secondly, kids with the next-millenium​
 equivalent of pocket calculators will be breaking the keys for these​
 certificates by the time half the validity period is up. Finally, because of​
 validity nesting of CA certs which typically expire after a year or two,​
 these certificates will either be treated as invalid as soon as they're​
 issued, or will become invalid a long time before their actual expiry date,​
 depending on how the software enforces validity nesting.​
​
 MakeCert generates certificates with peculiar collections of deprecated and​
 obsolete extensions. Incredibly, it can be persuaded to generate different​
 incompatible versions of the same extension depending on what options it's​
 given.​
​
 When asked to add a Netscape-style extension to a code-signing certificate,​
 MakeCert adds an extension which marks it as an SSL client certificate,​
 presumably because whoever wrote it got the endianness of the bit strings​
 reversed. Given that some implementations will allow Netscape extensions to​
 override other extensions which are present (both MSIE and Netscape Navigator​
 seem to treat a Verisign cert with a Netscape extension of "is a CA" and an​
 X.509v3 extension of "isn't a CA" as being a CA certificate), it'll be​
 interesting to see what other implementations make of these certificates.​
​
 In code signing certificates, the displayName (aka agencyInfo) is encoded as​
 an extension identified by the X.509 commonName OID, with the data being an​
 OCTET STRING containing a mostly Unicode representation of an ASCII URL​

 OCTET STRING containing a mostly Unicode representation of an ASCII URL​
 string, winning it the prize for "Most Mangled Extension".​
​
 An ever-changing variety of Microsoft products incorrectly encode bit strings​
 in certificate extensions.​
​
 Outlook Express generates certificates which not only use the GeneralizedTime​
 encoding more than 50 years before they're allowed to, but give the resulting​
 certificate an expiry date in the early 17th century. A Microsoft spokesman​
 has confirmed that this is deliberate, and not a bug.​
 How many Microsoft programmers does it take to change a​
 lightbulb?​
 None. They define darkness to be the new industry​
 standard.​
 -- Unknown​
​
 The same certificate type is marked as an X.509 v1 certificate even though it​
 contains extensions which aren't allowed in X.509 v1. To be valid, the​
 certificate should be marked as X.509 v3.​
​
 Some MS software will reject a certificate with certain basic extensions​
 marked critical (this provides one of the nonstandard definitions of the​
 critical flag mentioned earlier, "reject the certificate if you find a​
 critical extension").​
​
 Other MS software, contradicting the previous bug, will ignore the critical​
 flag in extensions, making the software useless to relying parties since they​
 can't rely on it to correctly process critical certificate components.​
​
 Microsoft software seems to mostly ignore the keyUsage bits and extKeyUsage​
 values and use the first certificate it finds for whatever purpose it wants​
 (for example if a subject has a signature and an encryption cert, it will​
 take the first one it finds and use it for both purposes, which will result​
 in the decryption and/or signature check failing).​
​
 Microsoft certificates can include arbitrarily mangled interpretations of​
 what comprises a DN, examples ranging from DNs which consist of a single​
 CommonName through to DNs with the country missing.​
​
 Microsoft's key-handling software assumes that public keys come in a certain​
 fixed format (for example that keys have a certain, set number of bits, that​
 (for RSA) p and q are both the same size, and in some cases that e falls​
 within a certain limited range). If all these conditions aren't met,​
 encryption and signatures quietly fail. To avoid this, you need to make the​
 keys a standard, common length (eg 512 bits for exportable crypto), make sure​
 p and q are of the same size, and use a small value for e.​
​
 In extentions which contain URL's, Microsoft software will sometimes produce​
 something which is neither an HTTP URL nor a UNC file URL, but some weird​
 mixture between the two.​
​
 Microsoft certificates contain a peculiar deprecated form of the​
 authorityKeyIdentifier extension. In this extension, CA certificates​
 sometimes identify themselves, rather than the CA which issued the issuing​
 certificate, which would lead to either endless loops or verification​
 failures if software took this identification literally.​
​
 Extensions in certificate requests are identified using the nonstandard​
 {microsoft 2 1 14} OID instead of the {pkcs-9 14} one, which means that​
 although they're standard extensions, no non-MS software can recognise them.​

​
 After MSIE 5.0, Microsoft partially switched to using the more standard​
 {pkcs-9 14} identifier, but also invented their own format for further​
 extensions alongside the existing one which nothing else can process. The​
 extensions contain either ASCII or (lengthy) Unicode strings identifying the​
 product which created the cert request.​
​
 Some DNs produced by MS software are encoded with zero-length strings.​
​
 Country codes in DNs created by MS software can contain values other than​
 the allowed two-character ISO code (for example three-character country name​
 abbreviations).​
​
 Code dating from about the MSIE 5.0 and newer stage will chain certificates​
 using the authorityKeyIdentifier even if the issuer name doesn't match, in​
 violation of X.509 and PKIX. This means that a certificate could claim an​
 issuer of "Verisign Class 1 Public Primary Certification Authority" even​
 though it was actually issued by "Honest Joe's Used Cars and Certificates",​
 and MSIE will accept it as valid.​
​
 Date handling for certificates appears to be completely broken, although it's​
 difficult to determine the real extent and nature of the problems. For​
 example a certificate which is valid from December 1951 to December 2050 is​
 reported by Windows as being valid from December 1950 to December 1950.​
 Despite this claim, it doesn't recognise the certificate as having expired,​
 indicating multiple levels of date-processing bugs in both the decoding and​
 handling of dates.​
​
 Certificates don't have to contain valid keys or signatures in order to be​
 accepted by Windows, for example a test certificate with an exponent of 1​
 (which means the key has no effect) is accepted as valid. This is probably​
 required to support an MSDN knowledge base article which tells users how to​
 extract keys from CryptoAPI by encrypting them with a public key with an​
 exponent of 1.​
​
 Some Microsoft products have been spotted which generate things which are​
 claimed to be certificate requests but which actually contain PKCS #7​
 signedData with a payload which is tagged as raw data but which is really a​
 certificate request with Microsoft's gratuitously-incompatible CRMF​
 extensions which aren't CRMF extensions, one of which is a certificate which​
 is used to sign the PKCS #7 signedData. Needless to say, nothing in​
 existence except for a small subset of other Microsoft products know what to​
 make of this mess.​
​
MISSI​
​
 MISSI certificates use shared DSA parameters, with p, q, and g only being​
 specified in the root CA certificate. Apart from the risk this introduces​
 (it allows signatures on certificates to be forged under some circumstances),​
 it also complicates certificate processing because the parameters needed to​
 verify a signature are generally held in a certificate held God knows where,​
 so even if a certificate is valid and trusted, it's not possible to use it​
 without having the entire cert chain up to the root on hand.​
​
NASA​
​
 NASA identifies RSA public keys in certificates by a peculiar deprecated​
 X.500 OID for RSA (2 5 8 1 1).​
​
Netlock​

Netlock​
​
 The Netlock CA incorrectly encodes bit strings in key/certificate usage​
 extensions.​
​
Netscape​
​
 Invalid encoding of some (but only some) occurences of the integer value 0 in​
 Commerce Server private keys. The problem occurs when the integer value 0 in​
 the RSAPrivateKey is encoded as integer, length = 0 rather than integer,​
 length = 1, value = 0. This was fixed on 20 March 1996 (between the Commerce​
 Server 1.13 and Enterprise 2.0 releases).​
​
 Some unidentified early Netscape CA software would encode an email address as​
 a PrintableString CommonName in a DN. This encoding is invalid since a​
 PrintableString can't contain an '@' character. The same CA issued a root​
 certificate with a validity period of zero by encoding the start and end time​
 as the same value.​
​
 Earlier Netscape software encoded the critical flag in extensions​
 incorrectly. The flag is defined as BOOLEAN DEFAULT FALSE, but it was always​
 encoded even if set to its default value. This bug was fixed in early 1997.​
​
 Handling of non-PrintableString components of DNs is somewhat ad hoc, at one​
 point the code would take any string which wasn't a PrintableString and​
 encode it as a T61String, whether it was or not. This may have been fixed​
 now, it results in improper encodings but most products don't care because​
 they don't know what to do with strings that should really be BMPStrings​
 either. Also, the Cert Server enforces an upper limit on the DN length of​
 255 characters when the DN is encoded as per RFC 1779 (so the actual limit is​
 slightly less than 255 characters).​
​
 The Netscape certificate extensions specification states that the keyUsage​
 extension can be ignored if it's present and non-critical, and lists mappings​
 from keyUsage to Netscape's own cert-type extension. Some implementations​
 follow these mappings and include both types of extension (notably Thawte),​
 others ignore them and include only the Netscape-specific extension (notably​
 Verisign).​
​
 Navigator can ignore the basicConstraints extension in some instances when it​
 conflicts with other extensions (see the entry for Verisign for details).​
 One way to get it to ignore all extensions is to add the cert as type​
 application/x-x509-ca-cert, in which case it'll accept anything including end​
 entity certificates and certificates with invalid signatures as CA​
 certificates.​
​
 The Netscape CA software incorrectly encodes bit strings in key/certificate​
 usage extensions.​
​
 Adding a new certificate with the same DN as an existing certificate (for​
 example a CA and site certificate with the same DN) can corrupt the Netscape​
 certificate database.​
​
 Encountering a T61String in a certificate will cause versions of Netscape​
 dating from before 1998 to crash with a null pointer dereference. Current​
 versions will still crash if they encounter a BMPString or UTF8String.​
​
NIST​
​
 NIST has a root CA certificate which the basicConstraints extension​

 identifies as being a non-CA certificate, making it invalid for its intended​
 purpose. One of these broken certificates was used for several versions of​
 the PKIX X.509 certificate and CRL profile as an example of a CA certificate,​
 which could result in the same problem as the PKCS #10 example vs​
 specification contradiction.​
​
Nortel​
​
 One of Nortel's CA products encodes UTCTime dates using the incorrect non-GMT​
 format. The software is used by (at least) IBM, the Canadian government​
 (GTIS/PWGCS), and Integrion, and can be identified by the "2.1d" version​
 string in a Nortel-specific attribute attached to the cert. Nortels WebCA​
 1.0 doesn't have this problem, the fact that the 2.1d software uses a number​
 of old, deprecated OIDs and the WebCA software doesn't would indicate that​
 this is more recent than whatever produced the "2.1d" certs (the "2.1d"​
 refers to a particular release of the infrastructure (Entrust/Manager,​
 Entrust/Officer, and Entrust/Admin) and the corresponding client-side​
 components (toolkits and Entrust/Client) rather than a single product). This​
 problem was fixed in the Entrust 3.0 infrastructure release.​
​
 Nortel spun off their crypto/security products group as Entrust Technologies​
 in January 1997, for further notes see the entry for Entrust.​
​
PKIX​
​
 PKIX requires that end entity certificates not have a basicConstraints​
 extension, which leaves the handling of the CA status of the certificate to​
 chance. Several popular applications treat these certificates as CA​
 certificates for backwards-compatibility with X.509v1 CA certificates which​
 didn't include basicConstraints, but in practice it's not really possible to​
 determine how these certificates will be treated. Because of this, it's not​
 possible to issue a PKIX-compliant end entity certificate and know how it'll​
 be treated once it's in circulation.​
​
 The theory behind this usage is that applications should know that a v3​
 certificate without basicConstraints defaults to being a non-CA certificate,​
 however (even assuming that applications implemented this), if​
 basicConstraints would have been the only extension in the certificate then​
 defaulting to leaving it out would make it a v1 certificate as required by​
 PKIX, so the v1 rules would apply. To get the required processing, the​
 certificate would have to be marked as v3 even though it's v1 (and the​
 application processing it would have to know about the expected behaviour).​
 In any case it's a somewhat peculiar use of the certificate version number​
 field to convey certificate constraint information.​
​
 One use for this feature is that it may be used as a cryptographically strong​
 random number generator. For each crypto key an application would issue 128​
 basicConstraint-less certificates, hand them out to different​
 implementations/users, and use their CA/non-CA interpretation as one bit of a​
 session key. This should yield close to 128 bits of pure entropy in each​
 key.​
​
 In between the draft versions of the standard (which were around for several​
 years) and the RFC, the policy qualifiers display text type was quietly​
 changed to exclude IA5String, which had been present in all the drafts. As a​
 result, certificates complying with the drafts didn't comply with the RFC.​
 Since noone but Verisign seems to use these fields (see comments elsewhere in​
 this document), it's noticeable by the fact that Verisign certs issued during​
 the lifetime of the drafts appear to contain a string type which is invalid​
 according to the RFC. This isn't a Verisign problem though, since they​

 according to the RFC. This isn't a Verisign problem though, since they​
 complied with the spec at the time the certificates were issued.​
​
Safelayer​
​
 Safelayer have solved the T61String problem by unilaterally extending​
 PrintableString to include latin-1 characters (apparently this was a​
 conscious decision, not an encoding bug). Since they're in Spain, this​
 results in most of their certs having invalid string encodings.​
​
SECUDE​
​
 The SecuDE software produces certificates with the public key components​
 identified by a peculiar deprecated X.500 OID for RSA (2 5 8 1 1).​
​
 Certificates are hashed with MD2, despite the fact that this algorithm has​
 been deprecated for some time.​
​
 Older versions of SECUDE produced broken CRLs consisting of various portions​
 of full CRLs (the software stored the CRLs in a nonstandard format, this was​
 fixed after 4.x but since this was the last free version it's still in use in​
 some places).​
​
SecureNet​
​
 This CA uses Microsoft software for its certificates, which means they​
 display all the bugs typical of MS-created certificates (see the extensive​
 entry under the Microsoft heading for more details).​
​
Security Domain/Zergo/Certificates Australia​
​
 The authorityKeyIdentifier contains both a keyIdentifier which isn't the​
 required SHA-1 hash (the subjectKeyIdentifier is a hash, it's only the​
 authorityKeyIdentifier which isn't), as well as an authorityCertIssuer​
 represented as a registeredID object identifier. Other certificates contain​
 an authorityCertIssuer consisting of a single zero byte. Another cert​
 contains an authorityCertSerialNumber consisting of a single zero byte.​
​
 Bit strings in key/certificate usage extensions are encoded incorrectly.​
​
 The certificatePolicies extension uses incorrect OIDs for the various​
 components such as the CPS and unotice, the CPS URL isn't a valid URL, and​
 the unotice is given as an IA5String rather than a SEQUENCE of assorted​
 components. A different certificatePolicies contains what looks like another​
 invalid OID which could be an attempt at the one in the previously mentioned​
 certificatePolicies.​
​
 In some cases the issuerName is encoded as 127 bytes of zero-padded​
 registeredID OID.​
​
 (Ugh, this stuff just gets worse and worse - the later attempts at things​
 like PKCS #7 cert chains are so far removed from the real thing that they​
 don't even remotely approach the actual standard. I'll stop now).​
​
 These issues were resolved in 1999 in a merger with Baltimore by switching to​
 Baltimore's UniCERT product.​
​
SEIS​
​
 The Swedish SEIS project software formerly created UniqueIdentifiers which​

 The Swedish SEIS project software formerly created UniqueIdentifiers which​
 contained embedded character strings (this is a peculiarity). In some​
 versions of the software, these were flagged as constructed rather than​
 primitive (this is a bug). The encoding bug was rectified in later versions.​
 The character strings encode 16-digit numbers, which are apparently used as​
 some form of extra identification which doesn't fit easily into a DN.​
​
 In the EID v2 certificate draft of February 1998, the use of​
 UniqueIdentifiers was deprecated in favour of a DN entry under a SEIS OID​
 which contained the information formerly in the UniqueIdentifiers.​
​
SET​
​
 There is a minor problem which arises from the fact that SET uses the ':'​
 character as a delimiter in commonName components of DNs. However BMPStrings​
 have more than one character which looks like a ':'. The correct one to use​
 is the ':' which is common to both PrintableString and BMPString, ASCII​
 character 0x3A.​
​
SHTTP specification​
​
 There is at least one invalid PCKS#7 example in earlier versions of the spec.​
 More recent drafts starting with <draft-ietf-wts-shttp-03.txt>, July 1996,​
 fix this. Implementors should ensure they are working with corrected​
 versions of the draft.​
​
SI-CA​
​
 The SI-CA incorrectly encodes some bit strings in key/certificate usage​
 extensions. Unlike other implementations and CAs which have this problem, it​
 doesn't do it consistently, correctly encoding some bitstrings and​
 incorrectly encoding others.​
​
Signet​
​
 [Some of these problems were fixed in late 1998]​
​
 Default fields are encoded when they have the default value rather than being​
 omitted.​
​
 Some basicConstraints extensions are marked as being critical, others in the​
 same chain are marked noncritical (using the incorrect default field​
 encoding mentioned above).​
​
 Bit strings in key/certificate usage extensions are encoded incorrectly.​
​
 Leaf certs are identified by giving the issuing cert a path length constraint​
 of 0 in the basicConstraints extension rather than by marking the cert itself​
 as being a non-CA cert. This isn't invalid, but is somewhat peculiar, and​
 doesn't work if the leaf cert is implicitly trusted (without the signing cert​
 being present), since there's no indication in the leaf cert itself as to​
 whether it's a CA cert or not.​
​
 BOOLEAN values have non-DER encodings.​
​
 The name constraints extension contains a permittedSubtree with what appears​
 to be an otherName consisting of a single zero byte (no OID or anything​
 else).​
​
South African CA​
​

​
 This CA has a root cert which has the UTCTime encoded without the seconds​
 (see the section "Validity" above), newer versions encode the time with the​
 seconds. This isn't an error since the accepted encoding was changed in​
 mid-1996, merely something to be aware of.​
​
SSLeay​
​
 SSLeay incorrectly encoded bit strings in key/certificate usage extensions,​
 this was fixed in late 1998 in version 0.9.1.​
​
Sweden Post/ID2​
​
 Sweden Post certificates incorrectly encode the certificate validity time,​
 omitting the seconds field in the UTCTime field.​
​
 The subjectKeyIdentifier is encoded in a variety of ways ranging in length​
 from 1 to 8 bytes. In CA certs the subjectKeyIdentifier is the same as the​
 authorityKeyIdentifier (which is valid, but odd) and consists of a text​
 string identifying the CA key (this isn't explicitly disallowed because of​
 the confusion over what's really meant to be in there but it isn't really​
 what's supposed to be in there either).​
​
 Instead of using a common name, the data is encoded as a surname + given name​
 + unique ID, producing DN fields with multiple AVAs per RDN (this isn't a​
 bug, but is definitely a peculiarity, and causes problems for software which​
 expects to use a common name as the identity of the certificate owner).​
​
 CA certs include policy mappings which specify the same issuer and subject​
 domain policy (this is known as a tautology mapping).​
​
 End-entity certs include (deprecated) subjectUniqueIdentifier fields (this is​
 a peculiarity). The fields contain embedded PrintableString's consisting of​
 variable-length numbers.​
​
SWIFT​
​
 SWIFT certificates have incorrect field lengths for several of the​
 certificate fields, so that the SWIFT CA doesn't even have a valid root CA​
 certificate.​
​
Syscall GbR​
​
 The Syscall GbR CA incorrectly encodes bit strings in key/certificate usage​
 extensions.​
​
TC Trustcenter​
​
 Some certs contain zero-length strings in the DN, this was fixed in early​
 1999.​
​
Telesec/Deutsche Telekom Trustcenter​
​
 Interoperability considerations merely create uncertainty​
 and don't serve any useful purpose. The market for digital​
 signatures is at hand and it's possible to sell products​
 without any interoperability​
 -- Telesec project leader discussing the Telesec​
 approach to interoperability (translated),​
 "Digitale Identitaet" workshop, Berlin, May 1999.​

 "Digitale Identitaet" workshop, Berlin, May 1999.​
​
 Telesec certificates come in two flavours, general-purpose certificates (for​
 example for S/MIME and SSL use) and PKS (Public Key Service) certificates​
 which are intended for use under the German digital signature law. The two​
 aren't compatible, and it's not possible to tell which one a given​
 certificate follows because the certificates don't include any policy​
 identification extensions. An example of the kind of problem this causes is​
 that the Telesec CPS claims certificates will be signed with RSA/MD5, however​
 published end-entity certs have appeared which are signed with​
 RSA/RIPEMD-160. These aren't invalid, they just follow the PKS profile​
 rather than the PKIX profile or CPS. Another example of this is the fact​
 that PKS certificates use GeneralizedTime, which is allowed under the PKS​
 profile but not the PKIX/SSL/SMIME/etc ones.​
​
 Some strings are encoded as T61Strings where PrintableStrings should be used​
 (there's no pattern to this). The strings which really are T61Strings use​
 floating diacritics, which isn't, strictly speaking, illegal, but anyone who​
 does use them should be hung upside down in a bucket of hungry earthworms.​
​
 Common names are encoded in an RDN component with two AVAs, one identified​
 by an unknown Telekom OID and the second identified with the CN OID, however​
 the common name in it is modified by appending extra letters and digits which​
 are intended to distinguish non-unique names in the same manner as the​
 (deprecated) X.509v2 uniqueIdentifiers. Since even imaginary (guaranteed​
 unique) names are modified in this way, it appears that this alteration is​
 always performed.​
​
 The certificates encode INTEGER values incorrectly by setting the high bit,​
 which makes them negative values. This is particularly problematic with RSA​
 keys since they use a hardwired exponent of 3,221,225,473 (!!!) which always​
 has the high bit set (0xC0000001), so all the RSA certificates have invalid​
 encodings. This was corrected in late 1999.​
​
 CA certificates are encoded with no basicConstraints present, which under​
 PKIX rules (which aren't terribly sensible, see an earlier section)​
 explicitly makes them non-CA certificates and under normal conditions makes​
 them highly ambiguous at best.​
​
 [This stuff just gets worse and worse, but I couldn't be bothered going​
 through and figuring out all the broken things they do. Telesec also​
 hardcode things like certificate parameters into their software (so that,​
 for example, half the info about a user might be stored on a smart card​
 (needed for SigG compliance) and the other half is hardcoded into the driver​
 DLL for the card), guaranteeing that nothing else in existence can work with​
 it. Ugh].​
​
Thawte​
​
 For a brief while, Thawte encoded email addresses as a PrintableString in a​
 DN's CommonName. This encoding is invalid since a PrintableString can't​
 contain an '@' character. This problem has been fixed.​
​
TimeStep/Newbridge/Alcatel​
​
 TimeStep incorrectly encode the DirectoryName in a GeneralName, using an​
 implicit rather than an explicit tag. The ASN.1 encoding rules require that​
 a tagged CHOICE always have an explicit tag in order to make the underlying​
 CHOICE tag visible. Timestep were bought by Newbridge who were in turn​
 bought by Alcatel, thus the naming confusion.​
​

​
UNINETT​
​
 Some certs from this CA identify RSA public keys in certificates by a​
 peculiar deprecated X.500 OID for RSA (2 5 8 1 1). However in one case a​
 second cert for the same person produced on the same day used rsaEncryption​
 instead.​
​
uniqueIdentifier​
​
 There are at least two incompatible objects called uniqueIdentifier, the​
 first is an attribute defined in 1991 in RFC 1274 with string syntax and an​
 illegal OID (rendering it, in theory, invalid), the second is an attribute​
 defined in 1993 in X.520v2 with BIT STRING syntax. LDAPv2 used the RFC 1274​
 interpretation, RFC 2256 changed the name for the X.520 version to​
 x500uniqueIdentifier for use with LDAPv3. There is also a uid attribute​
 defined in RFC 1274, this is different again.​
​
Verisign​
​
 Verisign incorrectly encodes the lengths of fields in the (deprecated)​
 keyUsageRestriction extension, which is used for the Microsoft code signing​
 certificates they issue. Some software like MSIE will quite happily accept​
 the broken extension, but other software which does proper checking will​
 reject it (actually there are so many weird, unknown critical extensions in​
 the code signing certs that it's unlikely that anything other than MSIE can​
 process them anyway).​
​
 Verisign were, as of March 1998, still issuing certificates with an MD2 hash,​
 despite the fact that this algorithm has been deprecated for some time. This​
 may be because they have hardware (BBN SafeKeypers) which can only generate​
 the older type of hash.​
​
 Verisign Webpass certificates contain a basicConstraints extension which​
 designate the certificate as a non-CA certificate, and a Netscape cert-type​
 extension which designate the certificate as a CA certificate. Despite this​
 contradiction, MSIE doesn't seem have any problems with using the​
 certificate, indicating that it's ignoring the basicConstraints entirely.​
 Navigator will load the certificate, but gets an internal error when it tries​
 to use it. This was fixed in late May 1998.​
​
 Some Verisign certificates mix DER and BER inside the signed portion of the​
 certificate. Only DER-encoded data is allowed in this part of the​
 certificate.​
​
 For a brief period of time in mid-1998 Verisign issued certificates signed​
 with an MD2 signature block wrapped inside an MD5 signature block. This was​
 fixed fairly quickly.​
​
 Verisign doesn't mark extensions as critical, even fundamental ones like​
 basicConstraints. This is because of Microsoft software which rejects​
 certificates with critical extensions.​
​
Y2K/2038 Issues​
​
 Many implementations base their internal time encoding on the Unix/ANSI/ISO C​
 seconds-since-1970 format, and some use 1970 as the rollover date for​
 interpreting two-digit dates instead of xx50. This includes, as of late​
 1997, Netscape and SSLeay. In addition the January 2038 limit for seconds​
 expressed as a signed 32-bit quantity means they can't represent dates past​

 expressed as a signed 32-bit quantity means they can't represent dates past​
 this point (which will cause problems with Microsoft's four-decade validity​
 periods). Implementations should therefore be very careful about keys with​
 very long expiry times, for security as well as date handling reasons,​
​
​
Annex A​
-------​
​
The Standards Designer Joke. I resisted adding this for a long time, but it​
really needs to be present :-).​
​
 An engineer, a chemist, and a standards designer are stranded on a desert​
 island with absolutely nothing on it. One of them finds a can of spam washed​
 up by the waves.​
​
 The engineer says "Taking the strength of the seams into account, we can​
 calculate that bashing it against a rock with a given force will open it up​
 without destroying the contents".​
​
 The chemist says "Taking the type of metal the can is made of into account,​
 we can calculate that further immersion in salt water will corrode it enough​
 to allow it to be easily opened after a day".​
​
 The standards designer gives the other two a condescending look, gazes into​
 the middle distance, and begins "Assuming we have an electric can opener...".​
​
​
Acknowledgements​
----------------​
​
Anil Gangolli, Deepak Nadig, Eric Young, Harald Alvestrand, John Pawling, Phil​
Griffin, and members of various X.509 and PKI-related mailing lists provided​
useful comments on usage recommendations, encoding issues, and bugs.​
​

	X.509 Style Guide

