X.509 Style Guide

wuwenlong527 T 2007-10-17 16:07:00 K& A7 2949 g
SrREFR: CA &.anp; OCSP SCEAr%%: extension microsoft character standards encoding deprecated
Fa™E

Pl CA : OCSP L INRIZ N
29 j CE 0 1 By
B LA
soruce :http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

X.509 Style Guide

Peter Gutmann, pgut@0l@cs.auckland.ac.nz
October 2000

[This file is frequently cited as a reference on PKI issues, when in fact it
was really intended as X.509 implementation notes meant mostly for
developers, to tell them all the things the standards leave out. If you're
looking for a general overview of PKI that includes most of what's in here
but presented in a more accessible manner, you should use "Everything you
never wanted to know about PKI but have been forced to find out",
http://www.cs.auckland.ac.nz/~pgut@0l/pubs/pkitutorial.pdf, a less technical
overview aimed at people charged with implementing and deploying the
technology. If you need to know what you're in for when you work with PKI,
this is definitely the one to read. Further PKI information and material can
be found on my home page, http://www.cs.auckland.ac.nz/~pguteol/].

There seems to be a lot of confusion about how to implement and work with X.509
certificates, either because of ASN.1 encoding issues, or because vagueness in
the relevant standards means people end up taking guesses at what some of the
fields are supposed to look like. For this reason I've put together these
guidelines to help in creating software to work with X.509 certificates, PKCS
#10 certification requests, CRLs, and other ASN.l-encoded data types.

I knew a guy who set up his own digital ID heirarchy, could
issue his own certificates, sign his own controls, ran SSL
on his servers, etc. I don't need to pay Verisign a
million bucks a year for keys that expire and expire. I
just need to turn off the friggen [browser warning]
messages.

-- Mark Bondurant, "Creating My Own Digital ID", in

alt.computer.security.

In addition, anyone who has had to work with X.509 has probably experienced
what can best be described as ISO water torture, which involves ploughing
through all sorts of ISO, ANSI, ITU, and IETF standards, amendments, meeting
notes, draft standards, committee drafts, working drafts, and other
work-in-progress documents, some of which are best understood when held
upside-down in front of a mirror (this has lead to people trading hard-to-find
object identifiers and ASN.1 definitions like baseball cards - "I'll swap you
the OID for triple DES in exchange for the latest CRL extensions"). This
document is an attempt at providing a cookbook for certificates which should
give you everything that you can't easily find anywhere else, as well as

https://blog.csdn.net/wuwenlong527
https://blog.csdn.net/wuwenlong527/category_341621.html
https://so.csdn.net/so/search/s.do?q=extension&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=microsoft&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=character&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=standards&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=encoding&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=deprecated&t=blog&o=vip&s=&l=&f=&viparticle=
https://blog.csdn.net/wuwenlong527/category_341621.html

comments on what you'd typically expect to find in certificates.

Given humanity's track record with languages, you wonder
why we bother with standards committies
-- Marcus Leech

Since the original X.509 spec is somewhat vague and open-ended, every
non-trivial group which has any reason to work with certificates has to produce
an X.509 profile which nails down many features which are left undefined in
X.509.
You can't be a real country unless you have a beer and an
airline. It helps if you have some kind of a football
team, or some nuclear weapons, but at the very least you
need a beer.
-- Frank Zappa
And an X.509 profile.
-- Me

The difference between a specification (X.509) and a profile is that a
specification doesn't generally set any limitations on combinations what can
and can't appear in various certificate types, while a profile sets various
limitations, for example by requiring that signing and confidentiality keys be
different (the Swedish profile requires this, and the German profile specifies
exclusive use of certificates for digital signatures). The major profiles in
use today are:

PKIX - Internet PKI profile.
FPKI - (US) Federal PKI profile.
MISSI - US DoD profile.
ISO 15782 - Banking - Certificate Management Part 1: Public Key
Certificates.
TeleTrust/MailTrusT - German MailTrusT profile for TeleTrusT (it really is
capitalised that way).
German SigG Profile - Profile to implement the German digital signature law
(the certificate profile SigI is particularly good, providing not just
the usual specification but also examples of each certificate field and
extension including the encoded forms).
ISIS Profile - Another German profile.
Australian Profile - Profile for the Australian PKAF (this may be the same
as DR 98410, which I haven't seen yet).
SS 61 43 31 Electronic ID Certificate - Swedish profile.
FINEID S3 - Finnish profile.
ANX Profile - Automotive Network Exchange profile.
Microsoft Profile - This isn't a real profile, but the software is
widespread enough and nonstandard enough that it constitutes a
significant de facto profile.

No standard or clause in a standard has a divine right of
existence
-- A Microsoft PKI architect explaining Microsoft's
position on standards compliance.

Unfortunately the official profiles tend to work like various monotheistic
religions where you either do what we say or burn in hell (that is, conforming
to one profile generally excludes you from claiming conformance with any others
unless they happen to match exactly). This means that you need to either
create a chameleon-like implementation which can change its behaviour at a
whim, or restrict yourself to a single profile which may not be accepted in
some locales. There is (currently) no way to mark a certificate to indicate

that 1t should be processed 1n a manner contormant to a particular protile,
which makes it difficult for a relying party to know how their certificate will
be processed by a particular implementation.

Interoperability Testing. Conclusion: It doesn't work
-- Richard Lampard, CESG, talking about UK government
PKI experiences

Although I've tried to take into account the various "Use of this feature will
result in the immediate demise of all small furry animals in an eight-block
radius"-type warnings contained in various standards documents to find a lowest
common denominator set of rules which should result in the least pain for all
concerned if they're adhered to, the existence of conflicting profiles makes
this a bit difficult. The idea behind the guide is to at least try to present
a "If you do this, you should be OK" set of guidelines, rather than a "You're
theoretically allowed to do this if you can find an implementation which
supports it" feature list.

Finally, the guide contains a (rather lengthy) list of implementation errors,
bugs, and problems to look out for with various certificates and the related
software in order to allow implementors to create workarounds.

The conventions used in the text are:
- All encodings follow the DER unless otherwise noted.

- Most of the formats are ASN.1, or close enough to it to be understandable
(the goal was to make it easily understandable, not perfectly grammatically
correct). Occasionally 15 levels of indirection are cut out to make things
easier to understand.

The resulting type and value of an instance of use of the
new value notation is determined by the value (and the type
of the value) finally assigned to the distinguished local
reference identified by the keyword VALUE, according to the
processing of the macrodefinition for the new type notation
followed by that for the new value notation.

-- ISO 8824:1988, Annex A

Certificate

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING
}

The goal of a cert is to identify the holder of the
corresponding private key, in a fashion meaningful to
relying parties.

-- Stephen Kent

By the power vested in me, I now declare this text string
and this bit string 'name' and 'key'. What RSA has joined,
let no man put asunder.

-- Bob Blakley

The encoding of the Certificate may follow the BER rather than the DER. At
least one implementation uses the indefinite-length encoding form for the
SEQUENCE.

TBSCertificate

The default tagging for certificates varies depending on which standard you're
using. The original X.509v1 definition used the ASN.1 default of explicit
tags, with X.509v3 extensions in a separate module with implicit tags. The
PKIX definition is quite confusing because the ASN.1 definitions in the
appendices use TAGS IMPLICIT but mix in X.509v3 definitions which use explicit
tags. Appendix A has such a mixture of implied implicit and implied explicit
tags that it's not really possible to tell what tagging you're supposed to use.
Appendix B (which first appeared in draft 7, March 1998) is slightly better,
but still confusing in that it starts with TAGS IMPLICIT, but tries to
partially switch to TAGS EXPLICIT for some sections (for example the
TBSCertificate has an 'EXPLICIT' keyword in the definition which is probably
intended to signify that everything within it has explicit tagging, except that
it's not valid ASN.1). The definitions given in the body of the document use
implicit tags, and the definitions of TBSCertificate and and TBSCertList have
both EXPLICIT and IMPLICIT tags present. To resolve this, you can either rely
entirely on Appendix B with the X.509v1l sections moved into a separate section
declared without "IMPLICIT TAGS', or use the X.509v3 definitions. The SET
definitions consistently use implicit tags.

Zaphod felt he was teetering on the edge of madness and
wondered whether he shouldn't just jump over and have done

with it.
-- Douglas Adams, "The Restaurant at the End of the
Universe"
TBSCertificate ::= SEQUENCE {

version [© 1 Version DEFAULT v1(9),
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniquelIdentifier OPTIONAL,
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

extensions [3] Extensions OPTIONAL
}

Version

Version ::= INTEGER { v1(®), v2(1), v3(2) }

This field is used mainly for marketing purposes to claim that software is
X.509v3 compliant (even when it isn't). The default version is v1(@), if the
issuerUniqueID or subjectUniqueID are present than the version must be v2(1) or
v3(2). If extensions are present than the version must be v3(2). An
implementation should target v3 certificates, which is what everyone is moving
towards.
I was to learn later in life that we tend to meet any new
situation by reorganizing: and a wonderful method it can be
for creating the illusion of progress, while producing
confusion, inefficiency and demoralization

-- Petronius Arbiter, ~60 A.D

Note that the version numbers are one less than the actual X.509 version
because in the ASN.1 world you start counting from @, not 1 (although it's not
necessary to use sequences of integers for version numbers. X.420, for
example, is under the impression that 2 is followed by 22 rather than the more
generally accepted 3).

If your software generates vl certificates, it's a good idea to actually mark
them as such and not just mark everything as v3 whether it is or not. Although
no standard actually forbids marking a v1 certificate as v3, backwards-
compatibility (as well as truth-in-advertising) considerations would indicate
that a vl certificate should be marked as such.

SerialNumber

CertificateSerialNumber ::= INTEGER

This should be unique for each certificate issued by a CA (typically a CA will
keep a counter in persistent store somewhere, perhaps a config file under Unix
and in the registry under Windows). A better way is to take the current time
in seconds and subtract some base time like the first time you ran the
software, to keep the numbers manageable. This has the further advantage over
a simple sequential numbering scheme that it doesn't allow tracking of the
number of certificates which have been signed by a CA, which can have nasty
consequences both if various braindamaged government regulation attempts ever
come to fruition, and because by using sequential numbers a CA ends up
revealing just how few certs it's actually signing (at the cost of a cert per
week, the competition can find out exactly how many certs are being issued each
week) .

Although this is never mentioned in any standards document, using negative
serial numbers is probably a bit silly (note the caveat about encoding INTEGER
values in the section on SubjectPublicKeyInfo).

Serial numbers aren't necessarily restricted to 32-bit quantitues. For example
the RSADSI Commercial Certification Authority serial number is ©x0241000016,
which is larger than 32 bits, and Verisign seem to like using 128 or 160-bit
hashes as serial numbers. If you're writing certificate-handling code, just
treat the serial number as a blob which happens to be an encoded integer (this
is particularly important for the case of the vendors who have forgotten that
the high bit of an integer is the sign bit, and generate negative serial
numbers for their certificates).

Signature

This rather misnamed field contains the algorithm identifier for the signature
algorithm used by the CA to sign the certificate. There doesn't seem to be
much use for this field, although you should check that the algorithm
identifier matches the one of the signature on the cert (if someone can forge
the signature on the cert then they can also change the inner algorithm
identifier, it's possible that this was included because of some obscure attack
where someone who could convince (broken) signature algorithm A to produce the
same signature value as (secure) algorithm B could change the outer,
unprotected algorithm identifier from B to A, but couldn't change the inner

identifier without invalidatine the signature. What this would achieve is

unclear).

Be very careful with your use of Object Identifiers. 1In many cases there are a
great many OIDs available for the same algorithm, but the exact OID you're
supposed to use varies somewhat.

You see, the conditional modifers depend on certain
variables like the day of the week, the number of players,
chair positions, things like that. [...] There can't be
more than a dozen or two that are pertinent.

-- Robert Asprin, "Little Myth Marker"

Your best bet is to copy the OIDs everyone else uses and/or use the RSADSI or
X9 0IDs (rather than the OSI or OIW or any other type of OID). OTOH if you
want to be proprietary while still pretending to follow a standard, use OSI
0ID's which are often underspecified, so you can do pretty much whatever you
want with things like block formatting and padding.

Another pitfall to be aware of is that algorithms which have no parameters have
this specified as a NULL value rather than omitting the parameters field
entirely. The reason for this is that when the 1988 syntax for
AlgorithmIdentifier was translated into the 1997 syntax, the OPTIONAL
associated with the AlgorithmIdentifier parameters got lost. Later it was
recovered via a defect report, but by then everyone thought that algorithm
parameters were mandatory. Because of this the algorithm parameters should be
specified as NULL, regardless of what you read elsewhere.

The trouble is that things *never* get better, they just
stay the same, only more so
-- Terry Pratchett, "Eric"

Name
Name ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF AttributeValueAssertion
AttributeValueAssertion ::= SEQUENCE {
attributeType OBJECT IDENTIFIER,
attributeValue ANY
}

This is used to encode that wonderful ISO creation, the Distinguished Name
(DN), a path through an X.500 directory information tree (DIT) which uniquely
identifies everything on earth. Although the RelativeDistinguishedName (RDN)
is given as a SET OF AttributeValueAssertion (AVA) each set should only contain
one element. However you may encounter other people's certs which could
contain more than one AVA per set, there has been a reported sighting of a
certificate which contained more than one element in the SET.

When the X.500 revolution comes, your name will be lined
up against the wall and shot

-- John Gilmore
They can't be read, written, assigned, or routed. Other
than that, they're perfect

-- Marshall Rose

When encoding sets with cardinality > 1, you need to take care to follow the
DER rules which say that they should be ordered by their encoded values
(although ASN.1 says a SET is unordered, the DER adds ordering rules to ensure
it can be encoded in an unambiguous manner). What you need to do is encode
each value in the set, then sort them by the encoded values, and output them
wrapped up in the SET OF encoding,

First things first, but not necessarily in that order.
-- Dr.Who

however your software really shouldn't be producing these sorts of RDN entries.

In theory you don't have to use a Name for the subject name if you don't want
to; there is a subjectAltName extension which allows use of email addresses or
URL's. 1In theory if you want to do this you can make the Name an empty
sequence and include a subjectAltName extension and mark it critical, but this
will break a lot of implementations. Because it is possible to do this, you
should be prepared to accept a zero-length sequence for the subject name in
version 3 certificates. Since the DN is supposed to encode the location of the
certificate in a DIT, having a null issuer name would mean you couldn't
actually locate the certificate, so CAs will need to use proper DNs. The
S/MIME certificate spec codifies this by requiring that all issuer DNs be non-
null (so only an end-user certificate can have a null DN, and even then it's
not really recommended), and this requirement was back-ported to the PKIX
profile shortly before it was finalised. The reason for requiring issuer DNs
is that S/MIME v2 and several related standards identify certificates by issuer
and serial number, so all CA certificates must contain an issuer DN (S/MIME v3
allows subjectKeyIdentifiers, but they're almost never used).

SET provides an eminently sensible definition for DNs:

Name ::= SEQUENCE SIZE(1..5) OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET SIZE(1) OF AttributeTypeAndValue
AttributeTypeAndvalue ::= { OID, C | O | OU | CN }

This means that when you see a SET DN it'll be in a fixed, consistent, and
easy-to-process format (note in particular the fixed maximum size, the
requirement for a single element per AVA, and the restriction to sensible
element types).

Note that the (issuer name, serialNumber (with a possible side order of
issuerUniqueID, issuerAltName, and keyUsage extension)) tuple uniquely
identifies a certificate and can be used as a key to retrieve certificates
from an information store. The subject name alone does not uniquely identify
a certificate because a subject can own multiple certificates.

You would normally expect to find the following types of AVAs in an X.509
certificate, starting from the top:

countryName = SEQUENCE { { 2 5 4 6 }, StringType(SIZE(2)) }
organization = SEQUENCE { { 2 5 4 10 }, StringType(SIZE(1...64)) }
organizationalUnitName

1:= SEQUENCE { { 2 5 4 11 }, StringType(SIZE(1...64)) }
commonName ::= SEQUENCE { { 2 5 4 3 }, StringType(SIZE(1...64)) }

You might also find:

1aralitvName ++= QFNIIFNCF £ { 2 58 4 7 Y <StrinoTunal ST7F(1 ARA Y Y)

iiiiiii Joivene e oLNvEIN-E | | & - T 4 3 v anipgiypPe\ —aen\ sesevT 4 g

stateOrProvinceName
::= SEQUENCE { { 2 5 4 8 }, StringType(SIZE(1...64)) }

Some profiles require at least some of these AVAs to be present, for example
the German profile requires at least a countryName and commonName, and in some
cases also an organization name. This is a reasonable requirement, as a
minimum you should always include the country and common name.

Finally, you'll frequently also run into:

emailAddress 1= SEQUENCE { { 1 2 840 113549 1 9 1 }, IA5String }

from PKCS #9, although this shouldn't be there.

I can't afford to make exceptions. Once word leaks out that
a pirate has gone soft, people begin to disobey you and
it's nothing but work, work, work all the time

-- The Dread Pirate Roberts, "The Princess Bride"

The reason why oddball components like the emailAddress have no place in a DN
created as per the original X.500 vision is because the whole DN is intended to
be a strictly heirarchical construction specifying a path through a DIT.
Unfortunately the practice adopted by many CAs of tacking on an emailAddress,
an element which has no subordinate relationship to the other components of the
DN, creates a meaningless mishmash which doesn't follow this hierarchical
model. For this reason the ITU defined the GeneralName, which specifically
allows for components such as email addresses, URL's, and other non-DN items.
GeneralNames are discussed in "Extensions" below.

Since the GeneralName provides a proper means of specifying information like
email addresses, your software shouldn't populate DNs with these components,
however for compatibility with legacy implementations you need to be able to
accept existing certificates which contain odd things in the DN. Currently all
mailers appear to be able to handle an rfc822Name in an altName, so storing it
in the correct location shouldn't present any interoperability problems. One
problem with email address handling is that many mailers will accept not only
'J.Random Luser <jrandom@aol.com>' as a valid emailAddress/rfc822Name but will
be equally happy with 'President William Jefferson Clinton <jrandom@aol.com>'.
The former is simply invalid, but the latter can be downright dangerous because
it completely bypasses the stated purpose of email certificates, which is to
identify the other party in an email exchange. Both PKIX and S/MIME explicitly
require that an rfc822Name only contain an RFC 822 addr-spec which is defined
as local-part@domain, so the mailbox form 'Personal Name <local-part@domain>’
isn't allowed (many S/MIME implementations don't enforce this though).
Unfortunately X.509v3 just requires "an Internet electronic mail address
defined in accordance with Internet RFC 822" without tying it down any further,
so it could be either an addr-spec or a mailbox.

Okay, I'm going home to drink moderately and then pass out.
-- Steve Rhoades, "Married with Children"

The countryName is the ISO 3166 code for the country. Noone seems to know how
to specify non-country-aligned organisations, it's possible that 'EU' will be
used at some point but there isn't any way to encode a non-country code
although some organisations have tried using 'INT'. Actually noone really even
knows what a countryName is supposed to refer to (let alone something as
ambiguous as "locality"), for example it could be your place of birth, country
of citizenship, country of current residence, country of incorporation, country
where corporate HQ is located, country of choice for tax and/or jurisdictional

issues, or a number of other possibilities (moving from countryName to
stateOrProvinceName, people in the US military can choose a state as their
official "residence" for tax purposes even if they don't own any property in
that state, and politicians are allowed to run for office in one state while
their wives claim residence and run for office in another state).

The details of the StringType are discussed further down. It's a good idea to
actually 1limit the string lengths to 64 characters as required by X.520
because, although many implementations will accept longer encoded strings in
certs, some can't manipulate them once they've been decoded by the software,
and you'll run into problems with LDAP as well. This means residents of places
like Taumatawhakatangihangakoauotamateaturipukakapikimaungahoronukupokai-
whenuakitanataha are out of luck when it comes to getting X.509 certs.

Comparing two DNs has its own special problems, and is dealt with in the rather
lengthy "Comparing DNs" section below.

There appears to be some confusion about what format a Name in a certificate
should take.
Insufficient facts always invite danger
-- Spock, "Space Seed"

In theory it should be a full, proper DN, which traces a path through the X.500
DIT, eg:

C=US, L=Area 51, O=Hanger 18, 0OU=X.500 Standards Designers, CN=John Doe

but since the DIT's usually don't exist, exactly what format the DN should take
seems open to debate. A good guideline to follow is to organize the namespace
around the C, 0, OU, and CN attribute types, but this is directed primarily at
corporate structures. You may also need to use ST(ate) and L(ocality) RDNs.
Some implementations seem to let you stuff anything with an OID into a DN,
which is not good.
There is nothing in any of these standards that would
prevent me from including a 1 gigabit MPEG movie of me
playing with my cat as one of the RDN components of the DN
in my certificate.
-- Bob Jueneman on IETF-PKIX
(There is a certificate of this form available from
http://www.cs.auckland.ac.nz/~pgut@01/pubs/
{dave_ca|dave}.der, although the MPEG is limited to
just over 1MB)

With a number of organisations moving towards the use of LDAP-based directory
services, it may be that we'll actually see X.500 directories in our lifetime,

Well, it just so happens that your friend here is only
mostly dead. There's a big difference between mostly dead
and all dead. Now, mostly dead is slightly alive.

-- Miracle Max, "The Princess Bride"

which means you should make an attempt to have a valid DN in the certificate.
LDAP uses the RFC 1779 form of DN, which is the opposite endianness to the ISO
9594 form used above:

CN=John Doe, OU=X.500 Standards Designers, O=Hanger 18, L=Area 51, C=US

There are always alternatives
-- Spock, "The Galileo Seven"

In order to work with LDAP implementations, you should ensure you only have a
single AVA per RDN (which also avoids the abovementioned DER-encoding hassle).

As the above text has probably indicated, DNs don't really work - there's no
clear idea of what they should look like, most users don't know about (and
don't want to know about) X.500 and its naming conventions, and as a
consequence of this the DN can end up containing just about anything. At the
moment they seem to be heading in two main directions:

- Public CAs typically set C=CA country, 0=CA name, OU=certificate type,
CN=user name
- A small subset of CAs in Europe which issue certs in accordance with

various signature laws and profiles with their own peculiar requirements
can have all sorts of oddities in the DN. You won't run into many of
these in the wild.

- A small subsets of CAs will modify the DN by adding a unique ID value to
the CN to make it a truly Distinguished Name. See the Bugs and
Peculiarities sections for more information on this.

- Private CAs (mostly people or organisations signing their own certs)
typically set any DN fields supported by their software to whatever makes
sense for them (some software requires all fields in the set
{c,0,0U,SP,L,CN} to be filled in, leading to strange or meaningless entries
as people try and guess what a Locality is supposed to be).

Generally you'll only run into certs from public CAs, for which the general
rule is that the cert is identified by the CN and/or email address. Some CAs
issue certs with identical CN's and use the email address to disambiguate them,
others modify the CN to make it unique. The accepted user interface seems to
be to let users search on the CN and/or email address (and sometimes also the
serial number, which doesn't seem terribly useful), display a list of matches,
and let the user pick the cert they want. Probably the best strategy for a
user interface which handles certs is:

if(email address known)

get a cert which matches the email address (any one should do);
elseif(name known)

search for all certs with CN=name;

if(multiple matches)

display email addresses for matched certs to user, let them choose;

else

error;

If you need something unique to use as an identifier (for example for a
database key) and you know your own software (or more generally software which
can do something useful with the identifier) will be used, use an X.500
serialNumber in a subjectAltName directoryName or use a subjectAltName
otherName (which was explicitly created to allow user-defined identifiers).
For internal cert lookups, encode the cert issuer and serial number as a PKCS
#7 issuerAndSerialNumber, hash it down to a fixed size with SHA-1 (you can
either use the full 20 bytes or some convenient truncated form like 64 bits),
and use that to identify the cert. This works because the internal structure
of the DN is irrelevant anyway, and having a fixed-size unique value makes it
very easy to perform a lookup in various data structures (for example the
random hash value generated leads to probabalistically balanced search trees
without requiring any extra effort).

Validity

Validity ::= SEQUENCE {

notBefore UTCTIME,
notAfter UTCTIME
}

This field denotes the time at which you have to pay your CA a renewal fee to
get the certificate reissued. The IETF originally recommended that all times
be expressed in GMT and seconds not be encoded, giving:

YYMMDDHHMMZ

as the time encoding. This provided an unambiguous encoding because a value of
00 seconds was never encoded, which meant that if you read a UTCTime value
generated by an implementation which didn't use seconds and wrote it out again
with an implementation which did, it would have the same encoding because the
00 wouldn't be encoded.

However newer standards (starting with the Defence Messaging System (DMS),
SDN.706), require the format to be:

YYMMDDHHMMSSZ

even if the seconds are 00. The ASN.1 encoding rules were in late 1996 amended
so that seconds are always encoded, with a special note that midnight is
encoded as ...000000Z and not ...240000Z. You should therefore be prepared to
encounter UTCTimes with and without the final @0 seconds field, however all
newer certificates encode 00 seconds. If you read and then write out an
existing object you may need to remember whether the seconds were encoded or
not in the original because adding the 00 will invalidate the signature (this
problem is slowly disappearing as pre-00 certificates expire).

A good workaround for this problem when generating certificates is to ensure
that you never generate a certificate with the seconds set to 00, which means
that even if other software re-encodes your certificate, it can't get the
encoding wrong.

At least one widely-used product generated incorrect non-GMT encodings so you
may want to consider handling the "+/-xxxx" time offset format, but you should
flag it as a decoding error nonetheless.

In coming up with the worlds least efficient machine-readable time encoding
format, the ISO nevertheless decided to forgo the encoding of centuries, a
problem which has been kludged around by redefining the time as UTCTime if the
date is 2049 or ealier, and GeneralizedTime if the date is 2050 or later (the
original plan was to cut over in 2015, but it was felt that moving it back to
2050 would ensure that the designers were either retired or dead by the time
the issue became a serious problem, leaving someone else to take the blame).

To decode a date, if it's UTCTime and the year is less than or equal to 49 it's
20xx, if it's UTCTime and the year is equal to or greater than 50 it's 19xx,
and if it's GeneralizedTime it's encoded properly (but shouldn't really be used
for dates before 2050 because you could run into interoperability problems with
existing software). Yuck.

To make this even more fun, another spec at one time gave the cutover date as
2050/2051 rather than 2049/2050, and allowed GeneralizedTime to be used before
2050 if you felt you could get away with it. 1It's likely that a lot of
conforming systems will briefly become nonconforming systems in about half a
centuries time, in a kind of security-standards equivalent of the age-old

e U S O A SUPENE I SR [V S S I T T R SOOI RN S e S [S S S,

paradox 1n wnicn Lnristians anad Mosliems will €na up 1n wne owner sidae s version
of hell.
Confusion now hath made his masterpiece.
-- Macduff, "Macbeth", II.i.

Another issue to be aware of is the problem of issuer certificates which have a
different validity time than the subject certificates they are used to sign.
Although this isn't specified in any standard, some software requires validity
period nesting, in which the subject validity period lies inside the issuer
validity period. Most software however performs simple pointwise checking in
which it checks whether a cert chain is valid at a certain point in time
(typically the current time). Maintaining the validity nesting requires that a
certain amount of care be used in designing overlapping validity periods
between successive generations of certificates in a hierarchy. Further
complications arise when an existing CA is re-rooted or re-parented (for
example a divisional CA is subordinated to a corporate CA). Australian and New
Zealand readers will appreciate the significance of using the term "re-rooted”
to describe this operation.

Finally, CAs are handling the problem of expiring certificates by reissuing
current ones with the same name and key but different validity periods. In
some cases even CA roots have been reissued with the only different being
extended validity periods. This can result in multiple identical-seeming
certificates being valid at one time (in one case three certificates with the
same DN and key were valid at once). The semantics of these certificates/keys
are unknown. Perhaps Validity could simply be renamed to RenewalFeeDueDate to
reflect its actual usage.

An alternative way to avoid expiry problems is to give the certificate an
expiry date several decades in the future. This is popular for CA certs which
don't require an annual renewal fee.

SubjectPublicKeyInfo

This contains the public key, either a SEQUENCE of values or a single INTEGER.
Keep in mind that ASN.1 integers are signed, so if any integers you want to
encode have the high bit set you need to add a single zero octet to the start
of the encoded value to ensure that the high bit isn't mistaken for a sign bit.
In addition you are allowed at most a single @ byte at the start of an encoded
value (and that only when the high bit is set), if the internal representation
you use contains zero bytes at the start you have to remove them on encoding.
This is a bit of a nuisance when encoding signatures which have INTEGER values,
since you can't tell how big the encoded signature will be without actually
generating it.

Uniqueldentifier

UniqueIdentifier ::= BITSTRING

These were added in X509v2 to handle the possible reuse of subject and/or
issuer names over time. Their use is deprecated by the IETF, so you shouldn't
generate these in your certificates. If you're writing certificate-handling
code, just treat them as a blob which happens to be an encoded bitstring.

Extensions

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {
extnid OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTETSTRING
}

X.509 certificate extensions are like a LISP property list: an ISO-standardised
place to store crufties. Extensions can consist of key and policy information,
certificate subject and issuer attributes, certificate path constraints, CRL
distribution points, and private extensions.

X.509v3 and the X.509v4 draft contains the ASN.1 formats for the standard V3
Certificate, V2 CRL and V2 CRLEntry extensions. In theory you should be able
to handle all of these, but there are large numbers of them and some may not be
in active use, or may be meaningless in some contexts.

'It's called a shovel,' said the Senior Wrangler. 'I've
seen the gardeners use them. You stick the sharp end in
the ground. Then it gets a bit technical'’

-- Terry Pratchett, "Reaper Man"

The extensions are encoded with IMPLICIT tags, it's traditional to specify this
in some other part of the standard which is at least 20 pages away from the
section where the extension is actually defined (but see the comments above
about the mixture of explicit and implicit tags in ASN.1 definitions).

There are a whole series of superseded and deprecated OIDs for extensions,
often going back through several generations. Older software and certificates
(and buggy newer software) will still use obsolete OIDs, any new software
should try and emit attributes tagged with the OID du jour rather than using
deprecated OIDs.

We can break extensions into two types, constraint extensions and informational
extensions. Constraint extensions limit the way in which the key in a
certificate, or the certificate itself, can be used. For example they may
limit the key usage to digital signatures only, or limit the DNs for which a CA
may issue certificates. The most common constraint extensions are basic
constraints, key usage and extended key usage, certificate policies (modified
by policy mappings and policy constraints), and name constraints. In contrast,
informational extensions contain information which may or may not be useful for
certificate users, but which doesn't limit the certificate use in any way. For
example an informational extension may contain additional information which
identifies the CA which issued it. The most common informational extensions
are key identifiers and alternative names.

The processing of these extensions is mostly specified in three different
standards, which means that there are three often subtly incompatible ways to
handle them. In theory, constraint extensions should be enforced religiously,
however the three standards which cover certificates sometimes differ both in
how they specify the interpretation of the critical flag, and how they require
constraint extensions to be enforced.

We could not get it out of our minds that some subtle but
profoundly alien element had been added to the aesthetic
feeling behind the technique.

-- H.P.Lovecratt, "At the Mountains ot Madness”

The general idea behind the critical flag is that it is used to protect the
issuing CA against any assumptions made by software which doesn't implement
support for a particular extension (none of the X.509-related standards provide
much of a definition for what a minimally, average, and fully compliant
implementation needs to support, so it's something of a hit and miss
proposition for an implementation to rely on the correct handling of a
particular extension). One commentator has compared the various certificate
contraints as serving as the equivalent of a Miranda warning ("You have the
right to remain silent, you have the right to an attorney, ...") to anyone
using the certificate. Without the critical flag, an issuer who believes that
the information contained in an extension is particularly important has no real
defence if the end users software chooses to ignore the extension.

The original X.509v3 specification requires that a certificate be regarded as
invalid if an unrecognised critical extension is encountered. As for the
extension itself, if it's non-critical you can use whatever interpretation you
choose (that is, the extension is specified as being of an advisory nature
only). This means that if you encounter constraints which require that a key
be used only for digital signatures, you're free to use it for encryption
anyway. If you encounter a key which is marked as being a non-CA key, you can
use it as a CA key anyway. The X.509v3 interpretation of extensions is a bit
like the recommended 130 km/h speed limit on autobahns, the theoretical limit
is 130, you're sitting there doing 180, and you're getting overtaken by
Porsches doing about 250. The problem with the original X.509v3 definitions is
that although they specify the action to take when you don't recognise an
extension, they don't really define the action when you do recognise it. Using
this interpretation, it's mostly pointless including non-critical extensions
because everyone is free to ignore them (for example the text for the keyUsage
extension says that "it is an advisory field and does not imply that usage of
the key is restricted to the purpose indicated", which means that the main
message it conveys is "I want to bloat up the certificate unnecessarily").

The second interpretation of extensions comes from the IETF PKIX profile. Like
X.509v3, this also requires that a certificate be regarded as invalid if an
unrecognised critical extension is encountered. However it seems to imply that
a critical extension must be processed, and probably considers non-critical
extensions to be advisory only. Unfortunately the wording is ambiguous enough
that a number of interpretations exist. Section 4.2 says that "CAs are
required to support <constraint extensions>", but the degree of support is left
open, and what non-CAs are supposed to do isn't specified. The paragraph

which follows this says that implementations "shall recognise extensions",
which doesn't imply any requirement to actually act on what you recognise. Even
the term "process" is somewhat vague, since processing an extension can consist
of popping up a warning dialog with a message which may or may not make sense
to the user, with an optional "Don't display this warning again" checkbox. 1In
this case the application certainly recognised the extension and arguably even
processed it, but it didn't force compliance with the intent of the extension,
which was probably what was intended by the terms "recognise" and "process".

The third interpretation comes from S/MIME, which requires that implementations
correctly handle a subset of the constraint and informational extensions.
However, as with PKIX, "correctly handle" isn't specified, so it's possible to
"correctly handle" an extension as per X.509v3, as per PKIX (choose the
interpretation you prefer), or as per S/MIME, which leaves the issue open (it
specifies that implementations may include various bits and pieces in their
extensions, but not how they should be enforced). S/MIME seems to place a
slightly different interpretation on the critical flag, limiting its use to the
small subset of extensions which are mentioned in the S/MIME spec, so it's not

possible to add other critical extensions to an S/MIME certificate.

"But it izz written!" bellowed Beelzebub.

"But it might be written differently somewhere else" said
Crowley. "Where you can't read it".

"In bigger letters" said Aziraphale.

"Underlined" Crowley added.

"Twice" suggested Aziraphale.
-- Neil Gaiman and Terry Pratchett, "Good Omens"

Finally, the waters are further muddied by CA policies, which can add their own
spin to the above interpretations. For example the Verisign CPS, section
2.4.3, says that "all persons shall process the extension [...] or else ignore
the extension", which would seem to cover all the bases. Other policies are
somewhat more specific, for example Netscapes certificate extension
specification says that the keyUsage extension can be ignored if it's not
marked critical, but Netscape Navigator does appear to enforce the
basicConstraints extension in most cases.

The whole issue is complicated by the fact that implementations from a large
vendor will reject a certificate which contains critical constraint extensions,
so that even if you interpret the critical flag to mean "this extension must be
enforced" (rather than just "reject this certificate if you don't recognise the
extension"), you can't use it because it will render the certificate unusable.
These implementations provide yet another interpretation of the critical flag,
"reject this certificate if you encounter a critical extension". The same
vendor also has software which ignores the critical flag entirely, making the
software essentially useless to relying parties who can't rely on it to perform
as required (the exact behaviour depends on the software and version, so one
version might reject a certificate with a critical extension while another
would ignore a critical extension).

Zaphod stared at him as if expecting a cuckoo to leap out
of his forehead on a small spring.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

Because of this confusion, it's probably impossible to include a set of
constraint extensions in a certificate which will be handled properly by
different implementations. Because of problems like this, the digital
signature laws of some countries are requiring certification of the software
being used as part of compliance with the law, so that you can't just claim
that your software "supports X.509v3 certificates" (everyone claims this
whether they actually do or not), you actually have to prove that it supports
what's required by the particular countries' laws. If you're in a country
which has digital signature legislation, make sure the software you're using
has been certified to conform to the legal requirements.

The best interpretation of constraint extensions is that if a certificate is
marked as an X.509v3 certificate, constraints should always be enforced. This
includes enforcing implied settings if the extension is missing, so that a
certificate being used in a CA role which has no basicConstraints extension
present should be regarded as being invalid (note however the problem with
PKIX-compliant certificates described later on). However even if one of the
standards is reworded to precisely define extension handling, there are still
plenty of other standards and interpretations which can be used. The only
solution to this would be to include a critical policy extension which requires
that all constraint extensions up and down the cert chain be enforced. Going
back to the autobahn analogy, this mirrors the situation at the Austrian

border, where everyone slows down to the strictly enforced speed limit as soon
as they cross the border.

Currently the only way to include a constraint enforcement extension is to make
it a critical policy extension. This is somewhat unfortunate since including
some other random policy may make the extension unrecognisable, causing it, and
the entire certificate, to be rejected (as usual, what constitutes an
unrecognisable extension is open to debate: if you can process all the fields
in an extension but don't recognise the contents of one of the fields, it's up
to you whether you count this as being unrecognisable or not).

A better alternative would be to define a new extension, enforceConstraints:

enforceConstraints EXTENSION ::= {
SYNTAX EnforceConstraintsSyntax
IDENTIFIED BY id-ce-enforceConstraints

}
EnforceConstraintsSyntax ::= BOOLEAN DEFAULT FALSE

This makes the default setting compatible with the current "do whatever you
feel like" enforcement of extensions. Enforcing constraints is defined as
enforcing all constraints contained in constraint extensions, incuding implied
settings if the extension is missing, as part of the certificate chain
validation process (which means that they should be enforced up and down the
cert chain). Recognising/supporting/handling/<whatever other wording is used
in standards> an extension is defined as processing and acting on all
components of all fields of an extension in a manner which is compliant with
the semantic intent of the extension.

'Where was I?' said Zaphod Beeblebrox the Fourth.
'Pontificating' said Zaphod Beeblebrox.
'Oh yes'.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

Just to mention a further complication with critical extensions, there are
instances in which it's possible to create certificates which are always
regarded as being invalid due to conflicts with extensions. For example a
generation n-1 critical extension might be replaced by a generation n critical
extension, resulting in a mixture of certs with generation n-1 extensions,
generation n-1 and generation n extensions (for compatibility) and (eventually)
generation n extensions only. However until every piece of software is
upgraded, generation n-1 software will be forced to reject all certs with
generation n extensions, even the (supposedly) backwards-compatibile certs with
both generations of extension in them.

'Mr.Beeblebrox, sir', said the insect in awed wonder,
'you're so weird you should be in movies'.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

Key Usage, Extended Key Usage, and Netscape cert-type

X.509 and PKIX use keyUsage and extKeyUsage to select the key to use from a
selection of keys unless the extension is marked critical, in which case it's
treated as a usage restriction. Microsoft claims to support key usage
enforcement, although experimentation with implementations has shown that it's
mostly ignored (see the entry on Microsoft bugs further on). In addition if an

extKevUsage extension is present. all certificates in the chain ub to the CA

R A e e e R

root must also support the same extKeyUsage (so that, for example, a general-
purpose CA can't sign a server gated crypto certificate - the reasoning behind
this is obvious). As it turns out though, extKeyUsage seems to be mostly
ignored just like keyUsage.

Netscape uses keyUsage as a key selection mechanism, and uses the Netscape
cert-type extension in a complex manner described in the Netscape certificate
extension specification. Since the cert-type extension includes the equivalent
of the basicConstraints CA flag, it's possible to specify some types of CA with
the cert-type extension. If you do this, you should be careful to synchronise
the basicConstraints CA flag with the setting of the cert-type extension
because some implementations (you can probably guess which one) will allow a
Netscape CA-like usage to override a non-CA keyUsage value, treating the
certificate as if it were a CA certificate. In addition Netscape also enforces
the same extKeyUsage chaining as Microsoft.

Unfortunately the extKeyUsage chaining interpretation is wrong according to
PKIX, since the settings apply to the key in the certificate (ie the CA's key)
rather than the keys in the certificates it issues. 1In other words an
extKeyUsage of emailProtection would indicate that the CA's certificate is
intended for S/MIME encryption, not that the CA can issue S/MIME certificates.
Both of the major implementators of certificate-handling software use the
chaining interpretation, but there also exist implementations which use the
PKIX interpretation, so the two main camps will fail to verify the other side's
cert chains unless they're in the (smaller) third camp which just ignores
extKeyUsage.

For keyUsage there is much disagreement over the use of the digitalSignature
and nonRepuduation bits since there was no clear definition in X.509 of when
the nonrepudiation flag should be used alongside or in place of the digital
signature flag. One school of thought holds that digitalSignature should be
used for ephemeral authentication (something which occurs automatically and
frequently) and nonRepuduation for legally binding long-term signatures
(something which is performed consciously and less frequently). Another school
of thought holds that nonRepuduation should act as an additional function for
the digitalSignature mechanism, with digitalSignature being a mechanism bit and
nonRepuduation being a service bit. The different profiles are split roughly
50:50 on this, with some complicating things by specifying that both bits
should be set but the certificate not be used for one or the other purpose.
Probably the best usage is to use digitalSignature for "digital signature for
authentication purposes" and nonRepudiation for "digital signature for
nonrepudiation purposes”.

"I think" said the Metatron, "that I shall need to seek
further instructions”.

"I alzzo" said Beelzebub.
-- Neil Gaiman and Terry Pratchett, "Good Omens"

In terms of profiles, MISSI and FPKI follow the above recommendation, PKIX uses
nonRepudiation strictly for nonrepudiation and digitalSignature for everything
else, ISO uses digitalSignature for entity authentication and nonRepudiation
strictly for nonrepudiation (leaving digital signatures for data authentication
without nonrepudiation hanging), and others use something in between. When
this issue was debated on PKI lists in mid-1998, over 100 messages were
exchanged without anyone really being able to uncontestably define what
digitalSignature and nonRepudiation really signified. The issue is further
confused by the fact that noone can agree on what the term "nonRepudiation"
actually means, exemplified by a ~200-message debate in mid-1999 which couldn't
reach any useful conclusion.

He had attached the correct colour-coded wires to the
correct pins; he'd checked that it was the right amperage
fuse; he'd screwed it all back together. So far, no
problems. He plugged it into the socket. Then he switched
the socket on. Every light in the house went out.

-- Neil Gaiman and Terry Pratchett, "Good Omens"

Although everyone has their own interpretation, a good practical definition is
"Nonrepudiation is anything which fails to go away when you stop believing in
it". Put another way, if you can convince a user that it isn't worth trying to
repudiate a signature then you have nonrepudiation. This can take the form of
having them sign a legal agreement saying they won't try to repudiate any of
their signatures, giving them a smart card and convincing them that it's so
secure that any attempt to repudiate a signature generated with it would be
futile, threatening to kill their kids, or any other method which has the
desired effect. One advantage (for vendors) is that you can advertise just
about anything as providing nonrepudiation, since there's sure to be some
definition which matches whatever it is you're doing (there are
"nonrepudiation” schemes in use today which employ a MAC using a secret shared
between the signer and the verifier, which must be relying on a particularly
creative definition of nonrepudiation).

Bei ihnen auf dem Server muesste irgendwie ein Key
rumliegen, den ich mit Netscape vermutlich erzeugt hab.
Wenn da mein Name drin steht, dann wird er das schon sein.
Koennten sie mir den zertifizieren?

-- endergone Zwiebeltuete

One might as well add a "crimeFree" (CF) bit with usage
specified as 'The crimeFree bit is asserted when subject
public key is used to verify digital signatures for
transactions that are not a perpetration of fraud or other
illegal activities'

-- Tony Bartoletti on ietf-pkix

I did have the idea that we mandate that CAs MUST set this
bit randomly whenever a keyUsage extension is present, just
to stop people who argue that its absence has a meaning.

-- Stephen Farrell on ietf-pkix

Basic Constraints

This is used to specify whether a certificate is a CA certificate or not. You
should always mark this critical, because otherwise some implementations will
ignore it and allow a non-CA certificate to act as a CA.

Alternative Names

The subject and issuer alternative names are used to specify all the things
which aren't suitable for a DN, which for most purposes means practically
everything of any use on the Internet (X.509v3 defines the alternative names
(or, more specifically, the GeneralName type) for use in specifying identifying
information which isn't suited for, or part of, a DN). This includes email
addresses, URL's for web pages, server addresses, and other odds and ends like
X.400 and EDI addresses. There's also a facility to include your postal
address, physical address, phone, fax and pager numbers, and of course the
essential MPEG of your cat.

The alternative names can be used for certificate identification in place of
the DNs, however the exact usage is somewhat unclear. 1In particular if an
altName is used for certificate chaining purposes, there's a roughly 50/50
split of opinion as to whether all the items in the altName must match or any
one of the items must match. For example if an altName contains three URL's in
the issuer and one in the client (which matches one of the issuer URL's), noone
really knows whether this counts as a valid altName match or not. Eventually
someone will make a decision one way or the other, probably the S/MIME
standards group who are rather reliant on altNames for some things (the S/MIME
group have requested that the PKIX group make DNs mandatory in order to allow
proper certificate chaining, and the S/MIME specs themselves require DNs for
CAs). Until this is sorted out, it's not a good idea to rely on altNames for
chaining.

This confusion is caused by the fact that an altName is serving two conflicting
purposes. The first of these is to provide extra information on the
certificate owner which can't be specified in the DN, including things like
their phone number, email address, and physical address. The second is to
provide an alternative to the ITU-managed (or, strictly speaking, non-managed)
DN space. For example a DNS name or IP address, which falls outside the range
of ITU (non-)management, is controlled by the IETF, which has jurisdiction over
the name space of the Internet-related altName components. However since an
altName can only specify a collection of names with a single critical attribute
to cover all of them, there's no way to differentiate between something which
really is critical (for example an rfc822Name being used in place of DN) and
something which is merely present to provide extra details on the certificate
owner (an rfc822Name being provided as a contact address). One IETF draft
overloaded this even further by forcing authorityInfoAccess semantics onto some
of the altName components.

This ambiguity is complicated by the presence of other attributes like path
processing constraints. For example does an included or excluded subtree
constraint containing a DN cover the subjectName DN, the altName directoryName,
or both?. More seriously, since a subjectName and altName directoryName have
the same form, it's possible to specify an identical DN in two different ways
across an issuer and subject cert, leading to the same problem described below
in the name constraints section in which it's possible to evade constraint
checks by using alternative encodings for the same item.

The solution to this problem would be to split the altName into two new
extensions, a true altName which provides a single alternative to the
subjectName (for example a single dNSName or rfc822Name) and which is used only
when the subject DN is empty, and a collection of other information about the
subject which follows the current altName syntax but which is used strictly for
informational purposes. The true altName provides a single alternative for the
subjectName, and the informational altName provides any extra identification
information which the subject may want to include with their certificate.

A different (and much uglier) solution is to try and stuff everything
imaginable into a DN. The problem with this approach is that it completely
destroys any hope of interoperability with directories, especially X.500
directories which rely on search arguments being predefined as a type of
filter. Unless you have this predefined filter, you can't easily search the
directory for a match, so it's necessary to have some limits placed on the
types of names (or schemas in X.500-speak) which are acceptable.

Unfortunately the "stuff everything into a DN" approach violates this
principle, making the result un-searchable within a directory, which voids the
reason for having the DN in the first place.

Certificate Policies and Policy Mappings and Constraints

The general idea behind the certificate policies extension is simple enough, it
provides a means for a CA to identify which policy a certificate was issued
under. This means that when you check a certificate, you can ensure that each
certificate in the chain was issued under a policy you feel comfortable with
(certain security precautions taken, vetting of employees, physical security of
the premises, no loud ties, that sort of thing). The certificatePolicies
extension (in its minimal form) provides a means of identifying the policy a
certificate was issued under, and the policyMappings extension provides a means
of mapping one policy to another (that is, for a CA to indicate that policy A,
under which it is issuing a certificate, is equivalent to policy B, which is
required by the certificate user).

Unfortunately on top of this there are qualifiers for the certificatePolicies
and the policyConstraints extension to muddy the waters. As a result, a
certificate policy often consists of a sequence of things identified by unknown
object identifiers, each with another sequence of things identified by
partially known, partially unknown object identifiers, with optional extra
attachments containing references to other things which software is expected to
know about by magic or possibly some form of quantum tunnelling.

Marx Brothers fans will possibly recall the scene in "A Day
at the Races” in which Groucho, intending to put his money
on Sun-up, is induced instead to buy a coded tip from Chico
and is able to establish the identity of the horse only, at
some cost in terms of time and money, by successive
purchases from Chico of the code book, the master code
book, the breeders' guide and various other works of
reference, by the end of which the race is over, Sun-up
having won.

-- Unknown, forwarded by Ed Gerck to cert-talk

This makes it rather difficult to make validity decisions for a certificate
which have anything more complex than a basic policyIdentifier present.

Because of this, you should only use a single policyIdentifier in a
certificate, and forgo the use of policy qualifiers and other odds and ends.
Currently noone but Verisign appears to use these, the presence of these
qualifiers in the PKIX profile may be related to the presence of Verisign in
the PKIX profiling process.

Name Constraints

The name constraints are used to constrain the certificates' DN to lie inside
or outside a particular subtree, with the excludedSubtrees field taking
precedence over the permittedSubtrees field. The principal use for this
extension is to allow balkanization of the certificate namespace, so that a CA
can restrict the ability of any CAs it certifies to issue certificates outside
a very restricted domain.

Unfortunately if the X.500 string encoding rules are followed, it's always
possible to avoid the excludedSubtrees by choosing unusual (but perfectly
valid) string encodings which don't appear to match the excludedSubtrees (see
the section on string encodings for more details on this problem). Although
PKIX constrains the string encodings to allow the nameConstraints to function,
it's a good idea to rely on permittedSubtrees rather than excludedSubtrees for
constraint enforcement (actually since virtually nothing supports this
extension, it's probably not a good idea to rely too much on either type of

FrAnctnAadnt hit whAan 94+ 46 ciinnAan +nAd ea nanmitt+nad nathan +han AvelodaAd

LUIIDLI allily UUL WIISIHT 1L 1> DUpPPUI LEU, UDT pPCIILLLEU | dllici Llidll ©ALLUUTU

subtrees).

Subject and Authority Key Identifiers

These are used to provide additional identification information for a
certificate. Unfortunately it's specified in a somewhat complex manner which
requires additional ASN.1 constraints or text to explain it, you should treat
it as if it were specified with the almost-ASN.1 of:

AuthorityKeyIdentifier ::= CHOICE {
keyIdentifier [©] OCTET STRING,
authorityCert [1] GeneralNames, authoritySerialNumber [2] INTEGER

}

X.509v3 allows you to use both types of identifier, but other standards and
profiles either recommend against this or explicitly disallow it, allowing only
the keyIdentifier. Various profiles have at various times required the use of
the SHA-1 hash of the public key (whatever that constitutes), the SHA-1 hash of
the subjectPublicKeyInfo data (for some reason this has to be done *without*
the tag and length at the start), the SHA-1 hash of the subjectPublicKey (again
without the tag, length, and unused bits portion of the BIT STRING, which
leaves just the raw public key data but omits the algorithm identifier and
parameters so that two keys for different algorithms with different parameters
which happen to share the same public key field end up with the same hash), a
64-bit hash of the subjectPublicKeyInfo (presumably with the tag and length), a
60-bit hash of the subjectPublicKey (again with tag and length) with the first
four bits set to various values to indicate MISSI key types, and some sort of
unique value such as a monotonically increasing sequence. Several newer
profiles have pretty much given up on this and simply specify "a unique value".
RFC 2459 also allows "a monotomically increasing sequence of integers", which
is a rather bad move since the overall supply of unique small integers is
somewhat limited and this scheme will break as soon as a second CA decides to
issue a cert with a "unique" subjectKeyIdentifier of the same value.

To balance the problems caused by this mess of conflicting and incompatible
standards, it appears that most implementations either ignore the keyIdentifier
entirely or don't bother decoding it, because in 1997 and 1998 a widely-used CA
accidentally issued certificates with an incorrect encoding of the
keyIdentifier (it wasn't even valid ASN.1 data, let alone X.509-conformant
ASN.1) without anyone noticing. Although a few standards require that a
keyIdentifier be used, its absence doesn't seem to cause any problems for
current implementations.

Recommendation: Don't even try and decode the authorityKeyIdentifier field,
just treat everything inside the OCTET STRING hole as an opaque blob.
Given that most current implementations seem to ignore this extension,
don't create certificate chains which require it to be processed in order
for the chaining to work.

The claimed reason for using the keyIdentifier rather than the
issuerAndSerialNumber is because it allows a certificate chain to be re-rooted
when an intermediate CA changes in some manner (for example when its
responsibilities are handed off from one department in an organisation to
another). If the certificate is identified through the keyIdentifier, no
nameConstraints are present, the certificate policies are identical or mapped
from one to the other, the altNames chain correctly, and no policyConstraints
are present, then this type of re-rooting is possible (in case anyone missed
the sarcasm in there, the gist is that it's highly unlikely to work).

Other Extensions

There are a wide variety of other extensions defined in various profiles.
These are in effect proprietary extensions because unless you can track down
something which recognises them (typically a single-vendor or small-group-of-
vendors product), you won't be able to do much with them - most software will
either ignore them completely or reject the certificate if the extension is
marked critical and the software behaves as required. Unless you can mandate
the use of a given piece of certificate-processing software which you've
carefully tested to ensure it processes the extension correctly, and you can
block the use of all other software, you shouldn't rely on these extensions.
Obviously if you're in a closed, carefully controlled environment (for example
a closed shop EDI environment which requires the use of certain extensions such
as reliance limits) the use of specialised extensions isn't a problem, but
otherwise you're on your own.

In addition to the use of other people's extensions, you may feel the need to
define your own. In short if you're someone other than Microsoft (who can
enforce the acceptance of whatever extensions they feel like), don't do it.
Not only is it going to be practically impossible to find anything to support
them (unless you write it yourself), but it's also very easy to stuff all sorts
of irrelevant, unnecessary, and often downright dangerous information into
certificates without thinking about it. The canonical example of something
which has no place in a certificate is Microsoft's cAKeyCertIndexPair
extension, which records the state of the CA software running on a Windows 2000
machine at the time the certificate was generated (in other words it offloads
the CA backup task from the machine's administrator to anyone using one of the
certificates).

Only wimps use tape backup: _real_ men just upload their

important stuff on ftp, and let the rest of the world

mirror it.

-- Linus Torvalds

The canonical example of a dangerous certificate extension is one which
indicates whether the owner is of legal age for some purpose (buying
alcohol/driving/entry into nightclubs/whatever). Using something like a
drivers license for this creates a booming demand for forged licenses which, by
their very nature, are difficult to create and tied to an individual through a
photo ID. Doing the same thing with a certificate creates a demand for those
over the age limit to make their keys (trivially copied en masse and not tied
to an individual) available to those under the age limit, or for those under
the age limit to avail themselves of the keys in a surreptitious manner. The
fact that the borrowed key which is being used to buy beer or rent a porn movie
can also be used to sign a legally binding contract or empty a bank account
probably won't be of concern until it's too late. This is a good example of
the law of unintended consequences in action.

If scientists can be counted on for anything, it's for
creating unintended consequences.
-- Michael Dougan

A related concern about age indicators in certificates, which was one of the
many nails in X.500's coffin, is the fact that giving a third party the
information needed to query a certificate directory in order to locate, for
example, all teenage girls in your localityName, probably wouldn't be seen as a
feature by most certificate holders. Similar objections were made to the use
of titles in DNs, for example a search on a title of "Ms" would have allowed
someone to locate all single women in their localityName, and full-blown X.500
would have provided their home addresses and probably phone numbers to boot.

TR R T e Ve Lo T S FC U PR o[NPI IREUNPDE SR [BRDR R i | SOy S g T,

untili edadriy 1yvyv 1nis Lype OT exiension oniy existed as 4 nypotlnetical case,
but it's now present as a mandatory requirement in at least one digital
signature law, which also has as a requirement that all CAs publish their
certificates in some form of openly-accessible directory.

I saw, and I heard an eagle, flying in mid heaven, saying
with a loud voice, "Woe! Woe! Woe for those who dwell on
the earth™

-- Revelations 8:15

Character Sets

Character strings are used in various places (most notably in DNs), and are
encumbered by the fact that ASN.1 defines a whole series of odd subsets of
ASCII/ISO 646 as character string types, but only provides a few peculiar and
strange oddball character encodings for anything outside this limited character
range.
The protruding upper halves of the letters now appear to
read, in the local language, "Go stick your head in a pig",
and are no longer illuminated, except at times of special
celebration.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

To use the example of DNs, the allowed string types are:

DirectoryString ::= CHOICE {
teletexString TeletexString (SIZE (1..maxSize)),
printableString PrintableString (SIZE (1..maxSize)),
bmpString BMPString (SIZE (1..maxSize)),
universalString UniversalString (SIZE (1..maxSize))
}

The easiest one to use, if you can get away with it, is IA5String, which is
basically 7-bit ASCII (including all the control codes), but with the dollar
sign potentially replaced with a "currency symbol". A more sensible
alternative is VisibleString (aka IS0646String), which is IAS5String without the
control codes (this has the advantage that you can't use it to construct macro
viruses using ANSI control sequences). In the DirectoryString case, you have
to make do with PrintableString, which is one of the odd ASCII/ISO 646 subsets
(for example you can't encode an '@', which makes it rather challenging to
encode email addresses).

Beyond that there is the T.61/TeletexString, which can select different
character sets using escape codes (this is one of the aforementioned "peculiar
and strange oddball encodings"). The character sets are Japanese Kanji (JIS C
6226-1983, set No. 87), Chinese (GB 2312-80, set No. 58), and Greek, using
shifting codes specified in T.61 or the international version, ISO 6937
(strictly speaking T61String isn't defined in T.61 but in X.680, which defines
it by profiling ISO 2022 character set switching). Some of the characters have
a variable-length encoding (so it takes 2 bytes to encode a character, with the
interpretation being done in a context-specific manner). The problem isn't
helped by the fact that the T.61 specification has changed over the years as
new character sets were added, and since the T.61 spec has now been withdrawn
by the ITU there's no real way to find out exactly what is supposed to be in
there (but see the previous comment on T.61 vs T61String - a T61String isn't
really a T.61 string). Even using straight 8859-1 in a T61String doesn't
always work, for example the 8859-1 character code for the Norwegian OE

(slashed 0) is defined using a T.61 escape sequence which, if present in a
certificate, may cause a directory to reject the certificate.

And then there came the crowning horror of all - the
unbelievable, unthinkable, almost unmentionable thing.
-- H.P.Lovecraft, "The Statement of Randolph Carter"

For those who haven't reached for a sick bag yet, one definition of T61String
is given in ISO 1990 X.208 which indicates that it contains registered
character sets 87, 102 (a minimalist version of ASCII), 103 (a character set
with the infamous "floating diacritics" which means things like accented
characters are encoded as "<add an accent to the next character> + <character>"
rather than with a single character code), 106 and 107 (two useless sets
containing control characters which noone would put in a name), SPACE + DELETE.
The newer ITU-T 1997 and ISO 1998 X.680 adds the character sets 6, 126, 144,
150, 153, 156, 164, 165, and 168 (the reason for some of these additions is
because once a character set is registered it can never change except by
"clarifying" it, which produces a completely new character set with a new
number (as with sex, once you make a mistake you end up having to support it
for the rest of your life)). 1In fact there are even more definitions of
T61String than that: The original CCITT 1984 ASN.1 spec defined T61String by
reference to a real T.61 recommendation (from which finding the actual
permitted characters is challenging, to put it mildly), then the ISO 1986 spec
defined them by reference to the international register, then the CCITT 1988
spec changed them again (the ISO 1990 spec described above may be identical to
the CCITT 1988 one), and finally they were changed again for ISO/ITU-T 1994
(this 1994 spec may again be the same as ITU-T 1997 and ISO 1998). I'm not
making this up!
The disciples came to him privately, saying, "Tell us, what
is the sign of your coming, and of the end of the world?"
[...] "You will hear of wars and rumors of wars; there will
be famines, plagues, and earthquakes in various places; the
sun will be darkened, the moon will not give her light, the
stars will fall from the sky, the powers of the heavens
will be shaken; certificates will be issued with floating
diacritics in their DNs; and then the end will come".
-- Matthew 24 (mostly)

The encoding for this mess is specified in X.209 which indicates that the
default character sets at the start of a string are 102, 106 and 107, although
in theory you can't really make this assumption without the appropriate escape
sequences to invoke the correct character set. The general consensus amoung
the X.500/ISODE directory crowd is that you assume that set 103 is used by
default, although Microsoft and Netscape had other ideas for their LDAPv2
products. 1In certificates, the common practice seems to be to use straight
latin-1, which is set numbers 6 and 100, the latter not even being an allowed
T61String set.

There are those who will say Danforth and I were utterly

mad not to flee for our lives after that; since our

conclusions were now completely fixed, and of a nature I

need not even mention to those who have read my account so

far.

-- H.P.Lovecraft, "At the Mountains of Madness"

Next are the BMPString and UniversalString, with BMPString having 16-bit
characters (UCS-2) and UniversalString having 32-bit characters (UCS-4), both
encoded in big-endian format. BMPString is a subset of UniversalString, being
the 16-bit character range in the ©/0 plane (ie the UniversalString characters
in which the 16 high bits are 0), corresponding to straight ISO 10646/Unicode

characters. Ihe ASN.1 standard says that UniversalString should only be used
if the encoding possibilities are constrained, it's better to avoid it entirely
and only use BMPString/ISO 10646/Unicode.

However, there is a problem with this: at the moment few implementors know how
to handle or encode BMPStrings, and people have made all sorts of guesses as to
how Unicode strings should be encoded: with or without Unicode byte order marks
(BOMs), possibly with a fixed endianness, and with or without the terminating
null character.
I might as well be frank in stating what we saw; though at
the time we felt that it was not to be admitted even to
each other. The words reaching the reader can never even
suggest the awfulness of the sight itself.
-- H.P.Lovecraft, "At the Mountains of Madness"

The correct format for BMPStrings is: big-endian 16-bit characters, no Unicode
byte order marks (BOMs), and no terminating null character (ISO 8825-1 section
8.20).

An exception to this is PFX/PKCS #12, where the passwords are converted to a
Unicode BMPString before being hashed. However both Netscape and Microsoft's
early implementations treated the terminating null characters as being part of
the string, so the PKCS #12 standard was retroengineered to specify that the
null characters be included in the string.

A final string type which is presently only in the PKIX profile but which
should eventually appear elsewhere is UTF-8, which provides a means of encoding
7, 8, 16, and 32-bit characters into a single character string. Since ASN.1
already provides character string types which cover everything except some of
the really weird 32-bit characters which noone ever uses,

It was covered in symbols that only eight other people in
the world would have been able to comprehend; two of them
had won Nobel prizes, and one of the other six dribbled a
lot and wasn't allowed anything sharp because of what he
might do with it.

-- Neil Gaiman and Terry Pratchett, "Good Omens"

the least general encoding rule means that UTF-8 strings will practically never
be used. The original reason they were present in the PKIX profile is because
of an IETF rule which required that all new IETF standards support UTF-8, but a
much more compelling argument which recently emerged is that, since most of the
other ASN.1 character sets are completely unusable, UTF-8 would finally breathe
a bit of sanity into the ASN.1 character set nightmare. Unfortunately, because
it's quite a task to find ASN.1 compilers (let alone certificate handling
software) which supports UTF-8, you should avoid this string type for now. PKIX
realised the problems which would arise and specified a cutover date of 1
January 2004 for UTF-8 use. Some drafts have appeared which recommend the use
of RFC 2482 language tags, but these should be avoided since they have little
value (they're only needed for machine processing, if they appear in a text
string intended to be read by a human they'll either understand it or they
won't and a language tag won't help). 1In addition UTF-8 language tags are huge
(about 30 bytes) due to the fact that they're located out in plane 14 in the
character set (although I don't have the appropriate reference to hand, plane
14 is probably either Gehenna or Acheron), so the tag would be much larger than
the string being tagged in most cases.

One final problem with UTF-8 is that it shares some of the T.61 string problems
in which it's possible for a malicious encoder to evade checks on strings
either by using different code points which produce identical-looking

characters when displayed or by using suboptimal encodings (in ASN.1 terms,
non-distinguished encodings) of a code point. They are aided in this by the
standard, which says (page 47, section 3.8 of the Unicode 3.0 standard) that
"when converting from UTF-8 to a Unicode scalar value, implementations do not
need to check that the shortest encoding is being used. This simplifies the
conversion algorithm". What this means is that it's possible to encode a
particular character in a dozen different ways in order to evade a check which
uses a straight byte-by-byte comparison as specified in RFC 2459. Although
some libraries such as glibc 2.2 use "safe" UTF-8 decoders which will reject
non-distinguished encodings, it's not a good idea to assume that everyone does
this.

Because of these problems, the SET designers produced their own alternative,
SETString, for places were DNs weren't required for compatibility purposes.

The design goals for the SETString were to both provide the best coverage of
ASCII and national-language character sets, and also to minimise implementation
pain. The SETString type is defined as:

SETString ::= CHOICE {
visibleString VisibleString (SIZE (1..maxSIZE)),
bmpString BMPString (SIZE (1..maxSIZE))
}

This provides complete ASCII/ISO 646 support using single byte characters, and
national language support through Unicode, which is in common use by industry.

In addition the SET designers decided to create their own version of the
DirectoryString which is a proper subset of the X.500 version. The initial
version was just an X.500 DirectoryString with a number of constraints applied
to it, but just before publication this was changed to:

DirectoryString ::= CHOICE {
printableString PrintableString (SIZE(1..maxSIZE)),
bmpString BMPString (SIZE(1..maxSIZE))
}

You must unlearn what you have learned.
-- Yoda

It was felt that this improved readablility and interoperability (and sanity).
T61String was never seriously considered in the design, and UniversalString
with its four-byte characters had no identifiable industry support and required
too much overhead. If you want to produce certs which work for both generic
X.509 and SET, then using the SET version of the DirectoryString is a good
idea. It's trivial to convert an ISO 8859-1 T61String to a BMPString and back
(just add/subtract a @ byte every other byte).

MISSI also subsets the string types, allowing only PrintableString and
T61String in DNs.

When dealing with these character sets you should use the "least inclusive" set
when trying to determine which encoding to use. This means trying to encode as
PrintableString first, then T61String, and finally BMPString/UniversalString.
SET requires that either PrintableStrings or BMPStrings be used, with
TeletexStrings and UniversalStrings being forbidden.

From this we can build the following set of recommendations:

- Use PrintableString if possible (or VisibleString or IA5String if this is
allowed, because it's rather more useful than PrintableString).

- If you use a T61String (and assuming you don't require SET compliance), avoid
the use of anything involving shifting and escape codes at any cost and just
treat it as a pure ISO 8859-1 string. If you need anything other than
8859-1, use a BMPString.

- If it won't go into one of the above, try for a BMPString.

- Avoid UniversalStrings.

Version 7 of the PKIX draft dropped the use of T61String altogether (probably
in response to this writeup :-), but this may be a bit extreme since the
extremely limited character range allowed by PrintableString will result in
many simple strings blowing out to BMPStrings, which causes problems on a
number of systems which have little Unicode support.

In 2004, you can switch to UTF-8 strings and forget about this entire section
of the guide.
I saw coming out of the mouth of the dragon, and out of the
mouth of the beast, and out of the mouth of the false
prophet, three unclean spirits, something like frogs; for
they are spirits of demons, performing signs
-- Biblical explanation of the origins of character set
problems, Revelations 16:13-14, recommended
rendition: Diamanda Galas, The Plague Mass.

Comparing DNs

This is an issue which is so problematic that it requires a section of its own
to cover it fully. According to X.500, to compare a DN:

- The number of RDNs must match.
- RDNs must have the same number of AVAs.
- Corresponding AVAs must match for equality:
- Leading and trailing spaces are ignored.
- Multiple internal spaces are treated as a single internal space.
- Characters (not code points, which are a particular encoding of a
character) are matched in a case-insensitive manner.

As it turns out, this matching is virtually impossible to perform (more
specifically, it is virtually impossible to accurately compare two DNs for
equivalence).
This, many claim, is not merely impossible but clearly
insane, which is why the advertising executives of the star
system of Bastablon came up with this quote: 'If you've
done six impossible things this morning, why not round it
off with breakfast at Milliways, the Restaurant at the End
of the Universe?'.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

The reason for this is that, with the vast number of character sets, encodings,
and alternative encodings (code points) for the same character, and the often
very limited support for non-ASCII character sets available on many systems, it
isn't possible to accurately and portably compare any RDNs other than those
containing one of the basic ASCII string types. The best you can probably do
is to use the strategy outlined below.

First, check whether the number of RDNs is equal. If they match, break up the
DNs into RDNs and check that the RDN types match. If they also match, you need

to compbare the text in each RDN in turn. This is where it gets trickv.

He walked across to the window and suddenly stumbled
because at that moment his Joo-Janta 200 Super-Chromatic
Peril Sensitive sunglasses had turned utterly black.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

First, take both strings and convert them to either ASCII (IS0646String) or
Unicode (BMPString) using the "least inclusive" rule. This is quite a task in
itself, because several implementations aren't too picky about what they'll put
into a string, and will stuff T61String characters into a PrintableString, or
(more commonly) Unicode characters into a T61String or anything into a
BMPString. Finding a T61String in a PrintableString or an 8-bit character set
string in a BMPString is relatively easy, but the best guess you can take at
detecting a Unicode string in a T61String is to check whether either the string
length is odd or all the characters are ASCII or ASCII with the high bit set.
If neither are true, it might be a Unicode string disguised as a T61String.

Once this is done, you need to canonicalise the strings into a format in which
a comparison can be done, either to compare strings of different types (eg
8-bit character set or DBCS string to BMPString) or strings with the same type
but different encodings (eg two T61Strings using alternative encodings). To
convert ASCII-as-Unicode to ASCII, just drop the odd-numbered bytes. Converting
a T61String to Unicode is a bit more tricky. Under Windows 95 and NT, you can
use MultiByteToWideChar(), although the conversion will depend on the current
code page in use. On systems with widechar support, you can use mbstowcs()
directly if the widechar size is the same as the BMPString char size (which it
generally isn't), otherwise you need to first convert the string to a widechar
string with mbstowcs() and then back down again to a BMPString, taking the
machine endianness into account. Again, the behaviour of mbstowcs() will
depend on the current locale in use. If the system doesn't have widechar
support, the best you can do is a brute-force conversion to Unicode by hoping
it's ISO 8859-1 and adding a zero byte every other byte.

Now that you might have the strings in a format where they can be compared, you
can actually try and compare them. Again, this often ends up as pure guesswork
if the system doesn't support the necessary character sets, or if the
characters use weird encodings which result in identical characters being
located at different code points.

First, check the converted character sets: If one is Unicode and the other
isn't, then the strings probably differ (depending on how well the
canonicalisation step went). If the types are the same, strip leading,
trailing, and repeated internal spaces from the string, which isn't as easy as
it sounds since there are several possible code points allocated to a space.

Once you've had a go at stripping spaces, you can try to compare the strings.
If the string is a BMPString then under Windows NT (but not Windows 95) you can
use CompareString(), with the usual caveat that the comparison depends on the
current locale. On systems which support towlower() you can extract the
characters from the string into widechars (taking machine endianness into
account) and compare the towlower() forms, with the usual caveat about locale
and the added problem that towlower() implementations vary from bare-bones
(8859-1 only under Solaris, HPUX, AIX) to vague (Unicode under Win95, OSF/1).
If there's no support for towlower(), the best you can do is use the normal
tolower() if the characters have a high byte of zero (some systems will support
8859-1 for tolower(), the worst which can happen is that the characters will be
returned unchanged), and compare the code points directly if it isn't an 8-bit
value.

Zaphods skin was crawling all over his body as if it was
trying to get off.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

Finally, if it's an ASCII string, you can just use a standard case-insensitive
string comparison function.

As you can see, there's almost no way to reliably compare two RDN elements. In
particular, no matter what you do:

- Some malicious users will deliberately pass DN checks with weird encodings.
- Some normal users will accidentally fail DN checks with weird encodings.

This becomes an issue when certain security checks depend on a comparison of
DNs (for example with excluded subtrees in the Name Constraints extension)
because it's possible to create multiple strings which are displayed
identically to the user (especially if you know which platform and/or software
to target) assuming they get displayed at all, but which compare as different
strings. If you want to be absolutely certain about DN comparisons, you might
need to set a certificate policy of only allowing PrintableStrings in DNs,
because they're the only ones which can be reliably compared.

PKCS #10

According to the PKCS #10 spec, the attributes field is mandatory, so if it's
empty it's encoded as a zero-length field. The example however assumes that if
there are no attributes, the field shouldn't be present, treating it like an
OPTIONAL field. A number of vendors conform to the example rather than the
specification, but just to confuse the issue RSADSI, who produced PKCS #10,
regard things the other way around, with the spec being right and the example
being wrong. The most obvious effect of this is that TIPEM (which was the only
available toolkit for PKCS#10 for a long time) follows the spec and does it
"wrong (sense #2)", whereas more recent independant implementations follow the
example and do it "wrong (sense #1)".

Unfortunately it's difficult to handle certificate requests correctly and be
lenient on decoding. Because a request could be reencoded into DER before
checking the signature, funny things can happen to your request at the remote
end if the two interpretations of PKCS #1@ differ. Because of this confusion,
you should be prepared to accept either version when decoding, but at the
moment it's not possible to provide any recommendation for encoding. When
encountering a particularly fascist parser which isn't aware of the PKCS #10
duality, it may be necessary to submit two versions of the request to determine
which one works.

No, no. Yes. No, I tried that. Yes, both ways. No, I

don't know. No again. Are there any more questions?

-- Xena, "Been There, Done That"

PKCS #10 also dates from the days of X.509v1 and includes references to
obsolete and deprecated objects and data formats. PKCS #6 extended
certificates are a workaround for the abscence of certificate extensions in
X.509v1 and shouldn't be used at all, and it's probably a good idea to avoid
the use of PKCS #9 extended attributes as well (some certification request
protocols bypass the use of PKCS #9 by wrapping extra protocol layers
containing PKCS #9 elements around the outside of PKCS #1@). Instead, you

should use of the CMMF draft, which defines a new attribute identified by the
NTN {nkr<c-9 14} with a value nf SFNIIFNCF OF Fytencinn whicrh allnawe X 5AQuR

Ca (PIRvo o aTg g WEa Ll U vuauL U oeygveives s AN DU WA U UV D SNe o Vo

attributes to be encoded into a PKCS #10 certification request. The complete
encoding used to encode X.509v3 extensions into a PKCS #10 certification
request is therefore:

[0] IMPLICIT SET OF { -- attributes from PKCS #10
SEQUENCE { -- Attribute from X.501

OBJECT IDENTIFIER, -- type, {pkcs-9 14}

SET OF { -- values
SEQUENCE OF { -- ExtensionReq from CMMF draft

<X.509v3 extensions>

}

}

As of late 1998, virtually all CAs ignore this information and at best add a
few predefined extensions based on the options selected on the web page which
was used to trigger the certification process. There are one or two
implementations which do support it, and these provide a convenient means of
specifying attributes for a certificate which don't involve kludges via HTML
requests. Microsoft started supporting something like it in mid-1999, although
they used their own incompatible OID in place of the PKCS #9 one to ensure non-
compatibility with any other implementation (the extensions are encoded in the
standard format, they're just identified in a way which means nothing else can
read them).

Unfortunately since PKCS #1@ doesn't mention X.509v3 at all, there's no clear
indication of what is and isn't valid as an attribute for X.509v3, but common
sense should indicate what you can and can't use. For example a subjectAltName
should be treated as a valid attribute, a basicConstraint may or may not be
treated as valid depending on the CA's certification policy, and an
authorityKeyIdentifier would definitely be an invalid attribute.

SET provides its own version of PKCS #10 which uses a slightly different
encoding to the above and handles the X.509v3 extensions keyUsage,
privateKeyUsagePeriod (whose use is deprecated by PKIX for some reason),
subjectAltName, and the SET extensions certificateType, tunneling, and
additionalPolicy. Correctly handling the SET extensions while at the same time
avoiding Microsoft's broken extensions which look very similar (see the "Known
Bugs/Peculiarities" section) provides a particularly entertaining exercise for
implementors.

ASN.1 Design Guidelines

This section contains some guidelines on what I consider good ASN.1 style.
This was motivated both by the apparent lack of such guidelines in existing
documents covering ASN.1, and by my seeing the ASN.1 definition of the X.400
ORAddress (Originator/Recipient Address). Although there are a number of
documents which explain how to use ASN.1, there doesn't seem to be much around
on ASN.1 style, or at least nothing which is easily accessible. Because of
this I've noted down a few guidelines on good ASN.1 style, tuned towards the
kind of ASN.1 elements which are used in certificate-related work. In most
cases I'll use the X.400 ORAddress as an example of bad style (I usually use
PFX for this since it's such a target-rich environment, but in this case I'll
make an exception). The whole ORAddress definition is far too long to include
here (it requires pages and pages of definitions just to allow the encoding of
the equivalent of an email address), but I'll include excerpts where required.

If you can't be a good example, then you'll just have to be
a horrible warning.
-- Catherine Aird

Addendum: Recently I discovered a source of ASN.1 even worse than PFX and
X.400, even worse than the pathological ASN.1 I created for the April 1 GUPP
RFC, which was meant to be the most awful I could come up with. It can be
found in the NIST "Government Smart Card Interoperability Specification", in
case anyone's interested (look at sections 6 and 7). Truly impressive.

To start off, keep your structure as simple as possible. Everyone always says
this, but when working with ASN.1 it's particularly important because the
notation gives you the freedom to design incredibly complicated structures
which are almost impossible to work with.

Bud, if dynamite was dangerous do you think they'd sell it
to an idiot like me?
-- Al Bundy, "Married with Children"

Look at the whole ORAddress for an example.

What we did see was something altogether different, and
immeasurably more hideous and detestable. It was the
utter, objective embodiment of the fantastic novelists
"thing that should not be'.

-- H.P.Lovecraft, "At the Mountains of Madness"

This includes provisions for every imaginable type of field and element which
anyone could conceivably want to include in an address. Now although it's easy
enough to feed the whole thing into an ASN.1 compiler and produce an enormous
chunk of code which encodes and decodes the whole mess, it's still necessary to
manually generate the code to interpret the semantic intent of the content.
This is a complex and error-prone process which isn't helped by the fact that
the structure contains dozens of little-understood and rarely-used fields, all
of which need to be handled correctly by a compliant implementation. Given the
difficulty of even agreeing on the usage of common fields in certificate
extensions, the problems which will be raised by obscure fields buried fifteen
levels deep in some definition aren't hard to imagine.

ASN.1 *WHAM* is not *WHAM* COBOL *WHAM* *WHAM* *WHAM*. The whole point of an
abstract syntax notation is that it's not tied to any particular representation
of the underlying data types. An extreme example of reverse-engineering data
type dependancy back into ASN.1 is X9.42's:

OCTET STRING SIZE(4) -- (Big-endian) Integer

Artificially restricting an ASN.1 element to fall within the particular
limitations of the hardware you're using creates all sorts of problems for
other users, and for the future when people decide that 640K isn't all the
memory anyone will ever need. The entire point of ASN.1 is that it not be tied
to a particular implementation, and that users not have to worry about the
underlying data types. It can also create ambiguous encodings which void the
DER guarantee of identical encodings for identical values: Although the
ANSI/SET provision for handling currencies which may be present in amounts
greater than 10e300 (requiring the amtExpl@ field to extend the range of the
ASN.1 INTEGER in the amount field) is laudable, it leads to nondeterministic
encodings in which a single value can be represented in a multitude of ways,
making it impossible to produce a guaranteed, repeatable encoding.

Careful with that tagging Eugene! 1In recent ASN.1 work it seems to have become
fashionable to madly tag everything which isn't nailed down, sometimes two or
three times recursively for good measure (see the next point).

The entire set of PDU's are defined using an incredible
amount of gratuitous and unnecessary tagging. Were the
authors being paid by the tag for this?

-- Peter Gutmann on ietf-pkix

For example consider the following ORAddress ExtensionAttribute:

ExtensionAttribute ::= SEQUENCE {
extension-attribute-type [@] INTEGER,
extension-attribute-value [1] ANY DEFINED BY extension-attribute-type

}

(this uses the 1988 ASN.1 syntax, more recent versions change this somewhat).
Both of the tags are completely unnecessary, and do nothing apart from
complicating the encoding and decoding process. Another example of this
problem are extensions like authorityKeyIdentifier, cRLDistributionPoints, and
issuingDistributionPoint which, after several levels of nesting, have every
element in a sequence individually tagged even though, since they're all
distinct, there's no need for any of the tags.

Another type of tagging is used for the ORAddress BuiltInStandardAttributes:

BuiltInStandardAttributes ::= SEQUENCE {
countryName [APPLICATION 1] CHOICE { ... } OPTIONAL,
}

Note the strange nonstandard tagging - even if there's a need to tag this
element (there isn't), the tag should be a context-specific tag and not an
application-specific one (this particular definition mixes context-specific and
application-specific tags apparently at random). For tagging fields in
sequences or sets, you should always use context-specific tags.

Speaking of sequences and sets, if you want to specify a collection of items in
data which will be signed or otherwise authenticated, use a SEQUENCE rather
than a SET, since the encoding of sets causes serious problems under the DER.
You can see the effect of this in newer PKCS #7 revisions, which substitute
SEQUENCE almost everywhere where the older versions used a SET because it's far
easier to work with the former even though what's actually being represented is
really a SET and not a SEQUENCE.

If you have optional elements in a sequence, it's always possible to eliminate
the tag on the first element (provided it's not itself tagged), since it can be
uniquely decoded without the tag. For example consider privateKeyUsagePeriod:

PrivateKeyUsagePeriod :: = SEQUENCE {
notBefore [©] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL

}

The first tag is unnecessary since it isn't required for the decoding, so it
could be rewritten:

PrivateKeyUsagePeriod :: = SEQUENCE {
notBefore GeneralizedTime OPTIONAL,

notAfter [©] GeneralizedTime OPTIONAL
}

saving an unneeded tag.

Because of the ability to specify arbitrarily nested and redefined elements in
ASN.1, some of the redundancy built into a definition may not be immediately
obvious. For example consider the use of a DN in an IssuingDistributionPoint
extension, which begins:

IssuingDistributionPoint ::= SEQUENCE {
distributionPoint [@] DistributionPointName OPTIONAL,

DistributionPointName ::= CHOICE {
fullName [@] GeneralNames,

GeneralNames ::= SEQUENCE OF GeneralName
GeneralName ::= CHOICE {

directoryName [4] Name,

Name ::= CHOICE {
rdnSequence RDNSequence

}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF AttributeTypeAndValue

[It] was of a baroque monstrosity not often seen outside
the Maximegalon Museum of Diseased Imaginings.
-- Douglas Adams, "The Restaurant at the End of the
Universe"

Once we reach AttributeTypeAndValue we finally get to something which contains
actual data - everything before that point is just wrapping.

Now consider a typical use of this extension, in which you encode the URL at
which CA information is to be found. This is encoded as:

SEQUENCE { [@] { [@] { SEQUENCE { [6] “"http://.." } } } }
All this just to specify a URL!
It looks like they were trying to stress-test their ASN.1
compilers.
-- Roger Schlafly on stds-p1363
It smelled like slow death in there, malaria, nightmares.

This was the end of the river alright.
-- Captain Willard, "Apocalypse Now"

e A e 2Vt e i o fF e e a2Vl e d A F2 24t ... _ 1 /- FrALIFAMAE AF

unToruundtelLy obecause OT Lne exiremely Drodd derinition used (d >EQUENLE Ur
GeneralName can encode arbitrary quantities of almost anything imaginable, for
example you could include the contents of an entire X.500 directory in this
extension), producing the code to correctly process every type of field and
item which could occur is virtually impossible, and indeed the semantics for
many types of usage are undefined (consider how you would use a physical
delivery address or a fax number to access a web server).

Because of the potential for creating over-general definitions, once you've
written down the definition in its full form, also write it out in the
compressed form I've used above, and alongside this write down the encoded form
of some typical data. This will very quickly show up areas in which there's
unnecessary tagging, nesting, and generality, as the above example does.

An extreme example of the misuse of nesting, tagging, and generality is the
ORName, which when fully un-nested is:

ORName ::= [APPLICATION ©] SEQUENCE { [@] { SEQUENCE OF SET OF
AttributeTypeAndvValue OPTIONAL } }

(it's not even possible to write all of this on a single line). This uses
unnecessary tagging, nonstandard tagging, and unnecessary nesting all in a
single definition.
It will founder upon the rocks of iniquity and sink
headfirst to vanish without trace into the seas of
oblivion.
-- Neil Gaiman and Terry Pratchett, "Good Omens"

The actual effect of the above is pretty close to:

ORName = Anything

Another warning sign that you've constructed something which is too complex to
be practical is the manner in which implementations handle its encoding. If
you (or others) are treating portions of an object as a blob (without bothering
to encode or decode the individual fields in it) then that's a sign that it's
too complex to work with. An example of this is the policyQualifiers portion
of the CertificatePolicies extension which, in the two implementations which
have so far come to light which actually produce qualifiers, treat them as a
fixed, opaque blob with none of the fields within it actually being encoded or
decoded. 1In this case the entire collection of qualifiers could just as easily
be replaced by a BOOLEAN DEFAULT FALSE to indicate whether they were there or
not.

Another warning sign that something is too complex is when your definition
requires dozens of paragraphs of accompanying text and/or extra constraint
specifications to explain how the whole thing works or to constrain the usage
to a subset of what's specified. If it requires four pages of explanatory text
to indicate how something is meant to work, it's probably too complex for
practical use.

No matter how grandiose, how well-planned, how apparently

foolproof an evil plan, the inherent sinfulness will by

definition rebound upon its instigators.

-- Neil Gaiman and Terry Pratchett, "Good Omens"

Finally, stick to standard elements and don't reinvent your own way of doing
things. Taking the ORAddress again, it provides no less than three different
incompatible ways of encoding a type-and-value combination for use in different
parts of the ORAddress. The standard way of encoding this (again using the
simpler 1988 syntax) is:

Attribute ::= SEQUENCE {
type OBJECT IDENTIFIER,
value ANY DEFINED BY type

}

The standard syntax for field names is to use biCapitalised words, with the
first letter in lowercase, for example:

md5WithRSAEncryption
certificateHold
permittedSubtrees

Let's take an example. Say you wanted to design an extension for yet another
online certificate validation protocol which specifies a means of submitting a
certificate validity check request. This is used so a certificate user can
query the certificate issuer about the status of the certificate they're using.
A first attempt at this might be:

StatusCheck ::= SEQUENCE {
statusCheckLocations [@] GeneralNames
}

Eliminating the unnecessary nesting and tagging we get:

StatusCheck ::= GeneralNames

However taking a typical encoding (a URL) we see that it comes out as:

StatusCheck ::= SEQUENCE { [6] "http://..." }

In addition the use of a SEQUENCE OF GeneralName makes the whole thing far to
vague to be useful (someone would be perfectly within their rights to specify a
pigeon post address using this definition, and I don't even want to get into
what it would require for an implementation to claim it could "process" this
extension). Since it's an online check it only really makes sense to do it via
HTTP (or at least something which can be specified through a URL), so we
simplify it down again to:

StatusCheck ::= SEQUENCE OF IAS5String -- Contains a URL

We've now reached an optimal way of specifying the status check which is easily
understandable by anyone reading the definition, and doesn't require enormous
amounts of additional explanatory text (what to do with the URL and how to
handle the presence of multiple URL's is presumably specified as part of the
status-check protocol - all we're interested in is how to specify the
location(s) at which the status check is performed).

base64 Encoding

Many programs allow certificate objects to be encoded using the base64 format
popularised in PEM and MIME for transmission of binary data over text-only
channels. The format for this is:

Unfortunately there is some disagreement over what <object name> should be for
objects other than certificates (there's no standard for implemetations to be
non-compliant with). Everyone seems to agree that for certificates it's
"CERTIFICATE' (SSLeay can also accept 'X509 CERTIFICATE'). For certificate
requests, it's generally 'NEW CERTIFICATE REQUEST', although SSLeay can also
generate 'CERTIFICATE REQUEST' and Microsoft creates an undocumented blob which
is nothing like a certificate request while still giving it the certificate
request header. CRLs are so rare that I haven't been able to collect a large
enough sample to get a consensus, but 'CRL' would seem to be the logical choice
(SSLeay uses 'X509 CRL', matching 'X509 CERTIFICATE'). Finally, if you see 'PGP

then you've got the wrong kind of object.

The number of dashes around the text must be exactly five.

. then shalt thou count to three, no more, no less.
Three shalt be the number thou shalt count, and the number
of the counting shalt be three. Four shalt thou not count,
neither count thou two, excepting that thou then proceed to
three. Five is right out.
-- Monty Python and the Holy Grail

There are three further object types which aren't covered yet, attribute
certificates (which are too new to be used), and Netscape cert sequences and
PKCS #7 cert chains (which are degenerate signed data objects). The logical
choice for these would be 'ATTRIBUTE CERTIFICATE', 'NETSCAPE CERTIFICATE
SEQUENCE' and 'PKCS7 CERTIFICATE CHAIN'.

Recommendation: When encoding objects, for certificates use 'BEGIN
CERTIFICATE', for attribute certificates use 'BEGIN ATTRIBUTE CERTIFICATE',
for cert requests use 'BEGIN NEW CERTIFICATE REQUEST', for CRLs use 'BEGIN
CRL', for Netscape certificate sequences use 'BEGIN NETSCAPE CERTIFICATE
SEQUENCE', and for PKCS #7 certificate chains use 'BEGIN PKCS7 CERTIFICATE
CHAIN'. When decoding objects, don't make any assumptions about what you
might find for <object name> - it's easiest to just look for 'BEGIN' and
then work out what's in there from the decoded object.

Known Bugs/Peculiarities

The following list of issues cover problems and areas to be aware of in X.509
implementations and related data objects from different vendors. The coverage
extends to objects related to X.509 such as private keys and encrypted/signed
data. This section is not intended as a criticism of different vendors, it is
merely an list of issues which people should be aware of when attempting to
write interoperable software. If vendors or users are aware of fixes for these
problems, could they please notify me of what was fixed, and when or in which
version it occurred.

One general comment about certificates is that, although you are allowed to
deconstruct them and then re-encode them, the fact that there are so many
incorrectly encoded certificates around means that the re-encoded certificates
will fail their signature check. For this reason it is strongly advised that
you always keep a copy of the original on hand rather than trying to recreate
it from its components as they are stored internally by your software.

An Post

An Post certificates include an enormously long (nearly four times the

maximum allowed size) legal disclaimer in the certificate policy extension
(the certificate contains as much legal disclaimer as all other data
combined).

Bankgate

Bankgate certificates specify the country as "INT", which isn't a valid
country name (presumably it's meant to be either "International" or
"Internet", but as it's used now it means "Limbo").

Belsign

The Belsign CA incorrectly encodes PKCS #7 certificate chains using a zero-
length set of certificates or CRLs if there are none present instead of
omitting the field which should contain them. Since the field is declared as
OPTIONAL, it should be omitted if it is empty.

BTG

BTG certificates contain incorrectly encoded bit strings in key/certificate
usage extensions.

CDSA

CDSA uses a peculiar deprecated DSA OID which appeared in an early,
incomplete version of SDN.702 but vanished in later versions (this OID also
appears in the German PKI profile). CDSA also doesn't recognise the
recommended X9.57 dsaWithSHA1l OID, causing it to reject DSA certificates
which use it.

CompuSource

This CA has a root cert which has the UTCTime encoded without the seconds
(see the section "Validity" above), newer versions encode the time with the
seconds. This isn't an error since the accepted encoding was changed in
mid-1996, merely something to be aware of.

COST

The lengths of some of the fields in CRLs are broken. Specifically, the
lengths of some sequences are calculated incorrectly, so if your code merely
nods at things like SET and SEQUENCE tags and lengths as they whiz past and
then works with the individual fields it'll work, but if it tries to work
with the length values given (for example making sure the lengths of the
components of a sequence add up correctly) then it'll break. The sequence
lengths are longer than the amount of data in the sequence, the COST code may
be adding the lengths of the elements of the sequence incorrectly (it's a bit
hard to tell what's going wrong. Basically the CRLs are broken). This was

supposed to have been fixed, but there still appear to be problems with CRLs
().

CRLs

Some CRLs which contain extensions (which are only valid in v2 CRLs) are
marked as vl CRLs because they don't have a version number field present.

These CRLs are (in theory) invalid, but your software should be prepared to
encounter them.

DAP

X.500 directories using DAP return BER-encoded certificates since the DAP
PDU's are BER encoded. This leads to many certificates failing their
signature check when they are re-encoded using the DER because they use
incorrect or unexpected encodings. This problem generally requires hacking
the directory software to kludge the encoding, since many certificates can't
survive the re-encoding process.

Deutsches Forschungsnetz (DFN)

The DFN CA used the SecuDE software until late-1998, see the SecuDE entry for
the quirks present in certificates generated with this software. These
certificates expired at the end of 1998, current certificates are generated
using OpenSSL.

Digicert

(Based on the certificate peculiarities this CA uses the same software as
Sweden Post, but some of the quirks of the Sweden Post certificates aren't
present so it has its own entry)

The subjectKeyIdentifier is encoded in a variety of ways ranging in length
from 1 to 8 bytes. In CA certs the subjectKeyIdentifier is the same as the
authorityKeyIdentifier (which is valid, but odd) and consists of a text
string identifying the CA key (this isn't explicitly disallowed because of
the confusion over what's really meant to be in there but it isn't really
what's supposed to be in there either).

CA certs include policy mappings which specify the same issuer and subject
domain policy (this is known as a tautology mapping).

Diginotar

End entity certs tend to be issued with a keyUsage specifying every possible
type of key usage, including ones which the algorithm being used is incapable
of.

Digital Signature Trust

The certificate policy contains a longer-than-allowed legal disclaimer,
although not quite as excessive as the An Post one. Just to make sure you
don't miss it, the certificate includes the whole thing a second time as a
Netscape comment extension.

End entity certs tend to be issued with a keyUsage specifying every possible
type of key usage, including ones which the algorithm being used is incapable
of (since this CA operates under the strict Utah law it's possible that this
takes precedence over the inability of the RSA algorithm to perform Diffie-
Hellman key agreement).

Digitrust Hellas

The Digitrst Hellas CA incorrectly encodes bit strings in key/certificate
usage extensions.

DNs with UniqueIDs
Given that, in practice, Distinguished Names aren't, some organisations which

really require unique names have tried to use unique identifiers as part of

whatever's used as the DN in order to make it Distineuished. Unfortunatelv

many applications can't handle multi-AVA RDNs, and those which can generally
won't display them to the user, making the use of DN components like
dnQualifiers impossible since all the user sees is a collection of certs
which all appear to have the same DN. As a result, some organisations modify
the DN by appending a unique identifier value to it. Examples of these
organisations are the US DoD (a very large and highly distributed
organisation which needs unique ID's) and AlphaTrust (which specialises in
certificates used in transactions which are legally binding regardless of the
state of digital signature legislation).

Entrust

This was formerly a Nortel division, for notes on earlier versions of the
software see the entry for Nortel. Because of their origins, Entrust-
specific extensions and attributes are still identified with NSN (Nortel
Secure Network) object identifiers.

The Entrust demo web CA encodes liability statements in the issuer DN, making
them unusable with X.500/LDAP directories. It also issues certificates with
a zero-duration validity (start time == end time), limiting their usefulness
somewhat.

Something identified as 'V3.0c' encodes the outer certificate using the BER
instead of the DER (which is unusual but legal), however it also omits the
final end-of-contents octets (which isn't). Some of the inner components are
also encoded using the BER (which isn't allowed). This has been fixed in the
4.0 release.

The same software populates the certificate with multiple generations of
extensions (for example it contains multiple copies of
authorityKeyIdentifier, keyUsage, and cRLDistributionPoints extensions of
different levels of deprecation). Luckily it doesn't mark any of its
extensions as critical, avoiding the mutual-exclusion problem documented in
the section on extensions.

The extension which identifies V3.0c contains a GeneralString, which is
perfectly legal but may come as a considerable surprise to some decoding
software (GeneralStrings get even weirder than the other ASN.1 types, and
aren't used in anything certificate-related).

Estonian CLO CA

Estonian National PCA
Estonian IOC CA

Estonian Piirivalveamet CA
Estonian Politsei CA

These CAs identify RSA public keys in certificates by a peculiar deprecated
X.500 0ID for RSA (2 58 1 1).

The Estonian National CA encodes some DN components as PrintableString's
containing illegal characters. I guess the Estonian ASN.1 Politsei will have
to look at this.

These CAs appear to be using the same software, possibly SecuDE, so they may
exhibit the same DN encoding bug as the Estonian National CA (I only have one

cert from each so it's hard to check this).

First Data

First Data's CA root certificate is (according to the extKeyUsage extension)
used for their SSL server, in SSL clients, and for email encryption.

GeneralName

Some implementations incorrectly encode the iPAddress (yes, it really is
capitalised like that; ASN.1 is bigger than the Internet) as a dotted address
rather than a 4-byte (soon to become 16 byte) OCTET STRING, so you might
encounter "123.124.125.126" instead of the correct 0x7B7C7D7E.

GIP-CPS

The software used in the French healthcare card project incorrectly encodes
cRLDistributionPoints, encoding the fullName as if it were specified with
[0] EXPLICIT GeneralNames, so that the final encoding is [@] + SEQUENCE +
GeneralName rather than [0] + GeneralName.

GTE

Older versions of GTE's software encoded UTCTimes without the seconds (see
the section "Validity" above), newer versions encode the time with the
seconds. This isn't an error since the accepted encoding was changed in
mid-1996, merely something to be aware of.

HBCI

The German Home Banking Computer Interface specification contains some
unusual requirements for certificates. Signatures are created by signing the
raw, unpadded RIPEMD-160 hash of the data. Similarly, RSA encryption is
performed by encrypting raw, unpadded content-encryption keys. This provides
no semantic security (that is, it's trivial to determine whether a given
plaintext corresponds to the ciphertext), and has other problems as well.

The IEEE P1363 standard provides further thoughts on this issue.

IBM

IBM's web CA uses the same peculiar deprecated DSA OID as CDSA and JDK.
Since it's based on IBM's Java CryptoFramework it probably ended up in the CA
via its use in the JDK.

ICE-TEL

Early ICE-TEL CRLs are broken, consisting of various portions of full CRLs.
See the entry for SECUDE for the explanation, this has been fixed in the
ICE-TEL successor project ICE-CAR.

IPSEC

IPSEC more or less assumes the use of X.509 certificates, however the
companies implementing it are usually in the VPN business rather than the PKI
business and tend to see certificates as a means to an end rather than an end
in itself. As a result, the state of certificate handling in IPSEC in
mid-1999 is something of a free-for-all, with certificates containing
whatever seems to work. For example some IPSEC implementations may place
identification information in the subjectName, some ignore the subjectName
and use the altName, and some use (even require) both. In general, you
shouldn't make any assumptions about what you'll encounter in certificates
designed for or created by IPSEC implementations.

INK /Tava

vy wav

JDK 1.1 issues DSA certificates with a signature OID of dsaWithSHA,
1.3.14.3.2.13, but the hash algorithm used is SHA-1. The OID should be
dsaWithSHA1l 1.3.14.3.2.27. Since noone ever seems to use SHA, a workaround
is to always assume SHA-1 even if the OID says SHA (which is also what the
JDK folks are banking on). 3JIDK also uses the peculiar deprecated DSA 0OID 1 3
14 3 2 12 which appeared in an early, incomplete version of SDN.702 but
vanished in later versions (CDSA does this as well, God knows where they're
getting these from). These strange OIDs are duplicated in other Java
software as well. Apparently these OIDs arise from RSADSI's BSAFE 3.0, which
is the crypto toolkit which underlies many of these implementations.

Keywitness

Keywitness encodes an email address as a PrintableString as part of a DN
component with an unknown OID registered to Keywitness. This encoding is
invalid since a PrintableString can't contain an '@' character.

Boolean values are encoded using a non-DER encoding.

LDAP V2/QUIPU

Some implementations will do strange things when storing signed items. Either
the client or the server may modify the objects (for example by uppercasing
parts of DNs, or changing time fields based on their interpretation of UTC,
or dropping seconds in time fields), which changes the resulting DER encoding
and causes the signature check to fail.

Microsoft

[Microsoft splits development along product lines rather than functionality,
so it's not uncommon to find a bug repeated over multiple products from
different teams, or to find a bug which has been fixed in one product
reappear in another. Because of this the following descriptions don't
usually identify a particular product because it's often a nontrivial
exercise identifying in which locations the problems occur]

Earlier versions of MSIE encoded the emailAddress of a PKCS #10 request
incorrectly. If the string doesn't fit into the range acceptable for a
PrintableString it produces a UniversalString (with 32-bit wide characters).
Since a PrintableString doesn't include an '@', you always end up with
UniversalStrings. The correct type should be IA5String.

MS software will often generate components with UniversalStrings in places
where they shouldn't really occur. According to MS, this was necessary
because BMPStrings weren't allowed in DirectoryStrings until October 1997,
which if true would require another entry in this list, "Some MS software
erroneously produced BMPStrings before it was permitted in October 1997". It
also seems to randomly use T61Strings where a PrintableString should be used
(there's no discernable pattern to this). This was fixed in MSIE 4.01 (but
not in other MS software as far as I can tell), where it uses either
PrintableString or BMPString (skipping T61String completely).

The same software will dump multiple AVAs into a single RDN, this is most
probably an encoding bug since the AVAs consist of a random jumble of
components with nothing in common.

Some Microsoft software will generate negative values about 50% of the time
whenever it encodes anything as an INTEGER because it ignores the fact that

the top bit of an integer is the sign bit (this is still occurring in
programs released as recently as early 1998).

When MSIE stores certificates, it recodes some components (specifically the
various time stamps) which don't include seconds so that they now include
seconds, which means that the signatures in the certificates are no longer
valid. The altered encoding is in fact the correct one, but it's probably
not worth altering the certificate to the correct form if it means breaking
the signature on it. A workaround for this problem (mentioned in the
"Validity" section of this document) is to ensure you never generate a
certificate with the seconds field set to ©.

MS software enforces validity period nesting for certificates, which can
cause certificates which are valid everywhere else to appear invalid when
loaded into a MS product.

Although various MS programs give the impression of handling certificate
policies, they only have a single hardcoded policy which is the Verisign CPS.
To see an example of this, create a certificate with a policy of (for
example) "This policy isn't worth the paper it's not written on" and view the
cert using Outlook Express. What's displayed will be the Verisign CPS.

The entire AuthentiCode certification framework collapsed on 1 July 1997 when
the AuthentiCode CA certificates expired (most people never noticed this due
to stealth upgrades of security components when other products were
installed). Microsoft issued an update (AuthentiCode 2.0) which includes a
partially-documented timestamping mechanism which is supposed to allow
signatures to be updated in some manner. Creating certificates with a
lifetime of over four decades (see below) is probably also intended to stop
this problem from recurring.

The MakeCert certificate-generation program gives certificates a default
validity of over 40 years (!!!). This creates three problems: firstly,
implementations which use the ANSI/ISO C time_t type for dates (which most
implementations do) will, for certificates generated after late 1997, be
unable to check the validity period. Secondly, kids with the next-millenium
equivalent of pocket calculators will be breaking the keys for these
certificates by the time half the validity period is up. Finally, because of
validity nesting of CA certs which typically expire after a year or two,
these certificates will either be treated as invalid as soon as they're
issued, or will become invalid a long time before their actual expiry date,
depending on how the software enforces validity nesting.

MakeCert generates certificates with peculiar collections of deprecated and
obsolete extensions. Incredibly, it can be persuaded to generate different
incompatible versions of the same extension depending on what options it's
given.

When asked to add a Netscape-style extension to a code-signing certificate,
MakeCert adds an extension which marks it as an SSL client certificate,
presumably because whoever wrote it got the endianness of the bit strings
reversed. Given that some implementations will allow Netscape extensions to
override other extensions which are present (both MSIE and Netscape Navigator
seem to treat a Verisign cert with a Netscape extension of "is a CA" and an
X.509v3 extension of "isn't a CA" as being a CA certificate), it'll be
interesting to see what other implementations make of these certificates.

In code signing certificates, the displayName (aka agencyInfo) is encoded as
an extension identified by the X.509 commonName OID, with the data being an

NCTET CTDTNMAZ FrAantAadinina A mac+Tu llndcrAada nannAacAantAa+iAan AL An ACATT 1IDI

ULILI JINLINU LUIILALIILIE A IMUDLLY UIILLUUT | ©pPI ©DTIILAallivlil Ul dll AJL1ll1 UNL

string, winning it the prize for "Most Mangled Extension".

An ever-changing variety of Microsoft products incorrectly encode bit strings
in certificate extensions.

Outlook Express generates certificates which not only use the GeneralizedTime
encoding more than 50 years before they're allowed to, but give the resulting
certificate an expiry date in the early 17th century. A Microsoft spokesman
has confirmed that this is deliberate, and not a bug.
How many Microsoft programmers does it take to change a
lightbulb?
None. They define darkness to be the new industry
standard.
-- Unknown

The same certificate type is marked as an X.509 vl certificate even though it
contains extensions which aren't allowed in X.509 vl. To be valid, the
certificate should be marked as X.509 v3.

Some MS software will reject a certificate with certain basic extensions
marked critical (this provides one of the nonstandard definitions of the
critical flag mentioned earlier, "reject the certificate if you find a
critical extension").

Other MS software, contradicting the previous bug, will ignore the critical
flag in extensions, making the software useless to relying parties since they
can't rely on it to correctly process critical certificate components.

Microsoft software seems to mostly ignore the keyUsage bits and extKeyUsage
values and use the first certificate it finds for whatever purpose it wants
(for example if a subject has a signature and an encryption cert, it will
take the first one it finds and use it for both purposes, which will result
in the decryption and/or signature check failing).

Microsoft certificates can include arbitrarily mangled interpretations of
what comprises a DN, examples ranging from DNs which consist of a single
CommonName through to DNs with the country missing.

Microsoft's key-handling software assumes that public keys come in a certain
fixed format (for example that keys have a certain, set number of bits, that
(for RSA) p and q are both the same size, and in some cases that e falls
within a certain limited range). If all these conditions aren't met,
encryption and signatures quietly fail. To avoid this, you need to make the
keys a standard, common length (eg 512 bits for exportable crypto), make sure
p and q are of the same size, and use a small value for e.

In extentions which contain URL's, Microsoft software will sometimes produce
something which is neither an HTTP URL nor a UNC file URL, but some weird
mixture between the two.

Microsoft certificates contain a peculiar deprecated form of the
authorityKeyIdentifier extension. 1In this extension, CA certificates
sometimes identify themselves, rather than the CA which issued the issuing
certificate, which would lead to either endless loops or verification
failures if software took this identification literally.

Extensions in certificate requests are identified using the nonstandard
{microsoft 2 1 14} OID instead of the {pkcs-9 14} one, which means that
although they're standard extensions, no non-MS software can recognise them.

After MSIE 5.0, Microsoft partially switched to using the more standard
{pkcs-9 14} identifier, but also invented their own format for further
extensions alongside the existing one which nothing else can process. The
extensions contain either ASCII or (lengthy) Unicode strings identifying the
product which created the cert request.

Some DNs produced by MS software are encoded with zero-length strings.

Country codes in DNs created by MS software can contain values other than
the allowed two-character ISO code (for example three-character country name
abbreviations).

Code dating from about the MSIE 5.0 and newer stage will chain certificates
using the authorityKeyIdentifier even if the issuer name doesn't match, in
violation of X.509 and PKIX. This means that a certificate could claim an
issuer of "Verisign Class 1 Public Primary Certification Authority" even
though it was actually issued by "Honest Joe's Used Cars and Certificates"”,
and MSIE will accept it as valid.

Date handling for certificates appears to be completely broken, although it's
difficult to determine the real extent and nature of the problems. For
example a certificate which is valid from December 1951 to December 2050 is
reported by Windows as being valid from December 1950 to December 1950.
Despite this claim, it doesn't recognise the certificate as having expired,
indicating multiple levels of date-processing bugs in both the decoding and
handling of dates.

Certificates don't have to contain valid keys or signatures in order to be
accepted by Windows, for example a test certificate with an exponent of 1
(which means the key has no effect) is accepted as valid. This is probably
required to support an MSDN knowledge base article which tells users how to
extract keys from CryptoAPI by encrypting them with a public key with an
exponent of 1.

Some Microsoft products have been spotted which generate things which are
claimed to be certificate requests but which actually contain PKCS #7
signedData with a payload which is tagged as raw data but which is really a
certificate request with Microsoft's gratuitously-incompatible CRMF
extensions which aren't CRMF extensions, one of which is a certificate which
is used to sign the PKCS #7 signedData. Needless to say, nothing in
existence except for a small subset of other Microsoft products know what to
make of this mess.

MISSI

MISSI certificates use shared DSA parameters, with p, q, and g only being
specified in the root CA certificate. Apart from the risk this introduces
(it allows signatures on certificates to be forged under some circumstances),
it also complicates certificate processing because the parameters needed to
verify a signature are generally held in a certificate held God knows where,
so even if a certificate is valid and trusted, it's not possible to use it
without having the entire cert chain up to the root on hand.

NASA

NASA identifies RSA public keys in certificates by a peculiar deprecated
X.500 0ID for RSA (2 58 1 1).

(UL, .

NETLOCK

The Netlock CA incorrectly encodes bit strings in key/certificate usage
extensions.

Netscape

Invalid encoding of some (but only some) occurences of the integer value 0 in
Commerce Server private keys. The problem occurs when the integer value © in
the RSAPrivateKey is encoded as integer, length = © rather than integer,
length = 1, value = ©. This was fixed on 20 March 1996 (between the Commerce
Server 1.13 and Enterprise 2.0 releases).

Some unidentified early Netscape CA software would encode an email address as
a PrintableString CommonName in a DN. This encoding is invalid since a
PrintableString can't contain an '@' character. The same CA issued a root
certificate with a validity period of zero by encoding the start and end time
as the same value.

Earlier Netscape software encoded the critical flag in extensions
incorrectly. The flag is defined as BOOLEAN DEFAULT FALSE, but it was always
encoded even if set to its default value. This bug was fixed in early 1997.

Handling of non-PrintableString components of DNs is somewhat ad hoc, at one
point the code would take any string which wasn't a PrintableString and
encode it as a T61String, whether it was or not. This may have been fixed
now, it results in improper encodings but most products don't care because
they don't know what to do with strings that should really be BMPStrings
either. Also, the Cert Server enforces an upper limit on the DN length of
255 characters when the DN is encoded as per RFC 1779 (so the actual limit is
slightly less than 255 characters).

The Netscape certificate extensions specification states that the keyUsage
extension can be ignored if it's present and non-critical, and lists mappings
from keyUsage to Netscape's own cert-type extension. Some implementations
follow these mappings and include both types of extension (notably Thawte),
others ignore them and include only the Netscape-specific extension (notably
Verisign).

Navigator can ignore the basicConstraints extension in some instances when it
conflicts with other extensions (see the entry for Verisign for details).

One way to get it to ignore all extensions is to add the cert as type
application/x-x509-ca-cert, in which case it'll accept anything including end
entity certificates and certificates with invalid signatures as CA
certificates.

The Netscape CA software incorrectly encodes bit strings in key/certificate
usage extensions.

Adding a new certificate with the same DN as an existing certificate (for
example a CA and site certificate with the same DN) can corrupt the Netscape
certificate database.

Encountering a T61String in a certificate will cause versions of Netscape
dating from before 1998 to crash with a null pointer dereference. Current
versions will still crash if they encounter a BMPString or UTF8String.

NIST

NIST has a root CA certificate which the basicConstraints extension

identifies as being a non-CA certificate, making it invalid for its intended
purpose. One of these broken certificates was used for several versions of
the PKIX X.509 certificate and CRL profile as an example of a CA certificate,
which could result in the same problem as the PKCS #10 example vs
specification contradiction.

Nortel

One of Nortel's CA products encodes UTCTime dates using the incorrect non-GMT
format. The software is used by (at least) IBM, the Canadian government
(GTIS/PWGCS), and Integrion, and can be identified by the "2.1d" version
string in a Nortel-specific attribute attached to the cert. Nortels WebCA
1.0 doesn't have this problem, the fact that the 2.1d software uses a number
of old, deprecated 0IDs and the WebCA software doesn't would indicate that
this is more recent than whatever produced the "2.1d" certs (the "2.1d"
refers to a particular release of the infrastructure (Entrust/Manager,
Entrust/Officer, and Entrust/Admin) and the corresponding client-side
components (toolkits and Entrust/Client) rather than a single product). This
problem was fixed in the Entrust 3.0 infrastructure release.

Nortel spun off their crypto/security products group as Entrust Technologies
in January 1997, for further notes see the entry for Entrust.

PKIX

PKIX requires that end entity certificates not have a basicConstraints
extension, which leaves the handling of the CA status of the certificate to
chance. Several popular applications treat these certificates as CA
certificates for backwards-compatibility with X.509v1l CA certificates which
didn't include basicConstraints, but in practice it's not really possible to
determine how these certificates will be treated. Because of this, it's not
possible to issue a PKIX-compliant end entity certificate and know how it'll
be treated once it's in circulation.

The theory behind this usage is that applications should know that a v3
certificate without basicConstraints defaults to being a non-CA certificate,
however (even assuming that applications implemented this), if
basicConstraints would have been the only extension in the certificate then
defaulting to leaving it out would make it a vl certificate as required by
PKIX, so the vl rules would apply. To get the required processing, the
certificate would have to be marked as v3 even though it's vl (and the
application processing it would have to know about the expected behaviour).
In any case it's a somewhat peculiar use of the certificate version number
field to convey certificate constraint information.

One use for this feature is that it may be used as a cryptographically strong
random number generator. For each crypto key an application would issue 128
basicConstraint-less certificates, hand them out to different
implementations/users, and use their CA/non-CA interpretation as one bit of a
session key. This should yield close to 128 bits of pure entropy in each
key.

In between the draft versions of the standard (which were around for several
years) and the RFC, the policy qualifiers display text type was quietly
changed to exclude IA5String, which had been present in all the drafts. As a
result, certificates complying with the drafts didn't comply with the RFC.
Since noone but Verisign seems to use these fields (see comments elsewhere in
this document), it's noticeable by the fact that Verisign certs issued during
the lifetime of the drafts appear to contain a string type which is invalid

according to the RFC. 1hi1s 1sn't a Verisign problem though, since they
complied with the spec at the time the certificates were issued.

Safelayer

Safelayer have solved the T61String problem by unilaterally extending
PrintableString to include latin-1 characters (apparently this was a
conscious decision, not an encoding bug). Since they're in Spain, this
results in most of their certs having invalid string encodings.

SECUDE

The SecuDE software produces certificates with the public key components
identified by a peculiar deprecated X.500 OID for RSA (2 58 1 1).

Certificates are hashed with MD2, despite the fact that this algorithm has
been deprecated for some time.

Older versions of SECUDE produced broken CRLs consisting of various portions
of full CRLs (the software stored the CRLs in a nonstandard format, this was
fixed after 4.x but since this was the last free version it's still in use in
some places).

SecureNet

This CA uses Microsoft software for its certificates, which means they
display all the bugs typical of MS-created certificates (see the extensive
entry under the Microsoft heading for more details).

Security Domain/Zergo/Certificates Australia

The authorityKeyIdentifier contains both a keyIdentifier which isn't the
required SHA-1 hash (the subjectKeyIdentifier is a hash, it's only the
authorityKeyIdentifier which isn't), as well as an authorityCertIssuer
represented as a registeredID object identifier. Other certificates contain
an authorityCertIssuer consisting of a single zero byte. Another cert
contains an authorityCertSerialNumber consisting of a single zero byte.

Bit strings in key/certificate usage extensions are encoded incorrectly.

The certificatePolicies extension uses incorrect OIDs for the various
components such as the CPS and unotice, the CPS URL isn't a valid URL, and
the unotice is given as an IA5String rather than a SEQUENCE of assorted
components. A different certificatePolicies contains what looks like another
invalid OID which could be an attempt at the one in the previously mentioned
certificatePolicies.

In some cases the issuerName is encoded as 127 bytes of zero-padded
registeredID OID.

(Ugh, this stuff just gets worse and worse - the later attempts at things
like PKCS #7 cert chains are so far removed from the real thing that they

don't even remotely approach the actual standard. I'll stop now).

These issues were resolved in 1999 in a merger with Baltimore by switching to
Baltimore's UniCERT product.

SEIS

The Swedish SEIS project software formerly created Uniqueldentifiers which

contained embedded character strings (this is a peculiarity). In some
versions of the software, these were flagged as constructed rather than
primitive (this is a bug). The encoding bug was rectified in later versions.
The character strings encode 16-digit numbers, which are apparently used as
some form of extra identification which doesn't fit easily into a DN.

In the EID v2 certificate draft of February 1998, the use of
Uniqueldentifiers was deprecated in favour of a DN entry under a SEIS OID
which contained the information formerly in the UniqueIdentifiers.

SET

There is a minor problem which arises from the fact that SET uses the ':'
character as a delimiter in commonName components of DNs. However BMPStrings
have more than one character which looks like a ':' The correct one to use
is the ':' which is common to both PrintableString and BMPString, ASCII

character 0x3A.
SHTTP specification

There is at least one invalid PCKS#7 example in earlier versions of the spec.
More recent drafts starting with <draft-ietf-wts-shttp-03.txt>, July 1996,
fix this. Implementors should ensure they are working with corrected
versions of the draft.

SI-CA

The SI-CA incorrectly encodes some bit strings in key/certificate usage
extensions. Unlike other implementations and CAs which have this problem, it
doesn't do it consistently, correctly encoding some bitstrings and
incorrectly encoding others.

Signet
[Some of these problems were fixed in late 1998]

Default fields are encoded when they have the default value rather than being
omitted.

Some basicConstraints extensions are marked as being critical, others in the
same chain are marked noncritical (using the incorrect default field
encoding mentioned above).

Bit strings in key/certificate usage extensions are encoded incorrectly.

Leaf certs are identified by giving the issuing cert a path length constraint
of @ in the basicConstraints extension rather than by marking the cert itself
as being a non-CA cert. This isn't invalid, but is somewhat peculiar, and
doesn't work if the leaf cert is implicitly trusted (without the signing cert
being present), since there's no indication in the leaf cert itself as to
whether it's a CA cert or not.

BOOLEAN values have non-DER encodings.
The name constraints extension contains a permittedSubtree with what appears
to be an otherName consisting of a single zero byte (no OID or anything

else).

South African CA

This CA has a root cert which has the UTCTime encoded without the seconds
(see the section "Validity" above), newer versions encode the time with the
seconds. This isn't an error since the accepted encoding was changed in
mid-1996, merely something to be aware of.

SSLeay

SSLeay incorrectly encoded bit strings in key/certificate usage extensions,
this was fixed in late 1998 in version 0.9.1.

Sweden Post/ID2

Sweden Post certificates incorrectly encode the certificate validity time,
omitting the seconds field in the UTCTime field.

The subjectKeyIdentifier is encoded in a variety of ways ranging in length
from 1 to 8 bytes. In CA certs the subjectKeyIdentifier is the same as the
authorityKeyIdentifier (which is valid, but odd) and consists of a text
string identifying the CA key (this isn't explicitly disallowed because of
the confusion over what's really meant to be in there but it isn't really
what's supposed to be in there either).

Instead of using a common name, the data is encoded as a surname + given name
+ unique ID, producing DN fields with multiple AVAs per RDN (this isn't a
bug, but is definitely a peculiarity, and causes problems for software which
expects to use a common name as the identity of the certificate owner).

CA certs include policy mappings which specify the same issuer and subject
domain policy (this is known as a tautology mapping).

End-entity certs include (deprecated) subjectUniqueldentifier fields (this is
a peculiarity). The fields contain embedded PrintableString's consisting of
variable-length numbers.

SWIFT

SWIFT certificates have incorrect field lengths for several of the
certificate fields, so that the SWIFT CA doesn't even have a valid root CA
certificate.

Syscall GbR

The Syscall GbR CA incorrectly encodes bit strings in key/certificate usage
extensions.

TC Trustcenter

Some certs contain zero-length strings in the DN, this was fixed in early
1999.

Telesec/Deutsche Telekom Trustcenter

Interoperability considerations merely create uncertainty
and don't serve any useful purpose. The market for digital
signatures is at hand and it's possible to sell products
without any interoperability
-- Telesec project leader discussing the Telesec
approach to interoperability (translated),
"Digitale Identitaet" workshoo. Berlin. Mav 1999.

Telesec certificates come in two flavours, general-purpose certificates (for
example for S/MIME and SSL use) and PKS (Public Key Service) certificates
which are intended for use under the German digital signature law. The two
aren't compatible, and it's not possible to tell which one a given
certificate follows because the certificates don't include any policy
identification extensions. An example of the kind of problem this causes is
that the Telesec CPS claims certificates will be signed with RSA/MD5, however
published end-entity certs have appeared which are signed with
RSA/RIPEMD-160. These aren't invalid, they just follow the PKS profile
rather than the PKIX profile or CPS. Another example of this is the fact
that PKS certificates use GeneralizedTime, which is allowed under the PKS
profile but not the PKIX/SSL/SMIME/etc ones.

Some strings are encoded as T61Strings where PrintableStrings should be used
(there's no pattern to this). The strings which really are T61Strings use
floating diacritics, which isn't, strictly speaking, illegal, but anyone who
does use them should be hung upside down in a bucket of hungry earthworms.

Common names are encoded in an RDN component with two AVAs, one identified

by an unknown Telekom OID and the second identified with the CN OID, however
the common name in it is modified by appending extra letters and digits which
are intended to distinguish non-unique names in the same manner as the
(deprecated) X.509v2 uniqueIdentifiers. Since even imaginary (guaranteed
unique) names are modified in this way, it appears that this alteration is
always performed.

The certificates encode INTEGER values incorrectly by setting the high bit,
which makes them negative values. This is particularly problematic with RSA
keys since they use a hardwired exponent of 3,221,225,473 (!!!) which always
has the high bit set (©xC0000001), so all the RSA certificates have invalid
encodings. This was corrected in late 1999.

CA certificates are encoded with no basicConstraints present, which under
PKIX rules (which aren't terribly sensible, see an earlier section)
explicitly makes them non-CA certificates and under normal conditions makes
them highly ambiguous at best.

[This stuff just gets worse and worse, but I couldn't be bothered going
through and figuring out all the broken things they do. Telesec also
hardcode things like certificate parameters into their software (so that,
for example, half the info about a user might be stored on a smart card
(needed for SigG compliance) and the other half is hardcoded into the driver
DLL for the card), guaranteeing that nothing else in existence can work with
it. ugh].

Thawte

For a brief while, Thawte encoded email addresses as a PrintableString in a
DN's CommonName. This encoding is invalid since a PrintableString can't
contain an '@"' character. This problem has been fixed.

TimeStep/Newbridge/Alcatel

TimeStep incorrectly encode the DirectoryName in a GeneralName, using an
implicit rather than an explicit tag. The ASN.1 encoding rules require that
a tagged CHOICE always have an explicit tag in order to make the underlying
CHOICE tag visible. Timestep were bought by Newbridge who were in turn
bought by Alcatel, thus the naming confusion.

UNINETT

Some certs from this CA identify RSA public keys in certificates by a
peculiar deprecated X.500 OID for RSA (2 5 8 1 1). However in one case a
second cert for the same person produced on the same day used rsaEncryption
instead.

uniqueldentifier

There are at least two incompatible objects called uniqueIldentifier, the
first is an attribute defined in 1991 in RFC 1274 with string syntax and an
illegal O0ID (rendering it, in theory, invalid), the second is an attribute
defined in 1993 in X.520v2 with BIT STRING syntax. LDAPv2 used the RFC 1274
interpretation, RFC 2256 changed the name for the X.520 version to
x500uniqueIdentifier for use with LDAPv3. There is also a uid attribute
defined in RFC 1274, this is different again.

Verisign

Verisign incorrectly encodes the lengths of fields in the (deprecated)
keyUsageRestriction extension, which is used for the Microsoft code signing
certificates they issue. Some software like MSIE will quite happily accept
the broken extension, but other software which does proper checking will
reject it (actually there are so many weird, unknown critical extensions in
the code signing certs that it's unlikely that anything other than MSIE can
process them anyway).

Verisign were, as of March 1998, still issuing certificates with an MD2 hash,
despite the fact that this algorithm has been deprecated for some time. This
may be because they have hardware (BBN SafeKeypers) which can only generate
the older type of hash.

Verisign Webpass certificates contain a basicConstraints extension which
designate the certificate as a non-CA certificate, and a Netscape cert-type
extension which designate the certificate as a CA certificate. Despite this
contradiction, MSIE doesn't seem have any problems with using the
certificate, indicating that it's ignoring the basicConstraints entirely.
Navigator will load the certificate, but gets an internal error when it tries
to use it. This was fixed in late May 1998.

Some Verisign certificates mix DER and BER inside the signed portion of the
certificate. Only DER-encoded data is allowed in this part of the
certificate.

For a brief period of time in mid-1998 Verisign issued certificates signed
with an MD2 signature block wrapped inside an MD5 signature block. This was
fixed fairly quickly.

Verisign doesn't mark extensions as critical, even fundamental ones like
basicConstraints. This is because of Microsoft software which rejects
certificates with critical extensions.

Y2K/2038 Issues

Many implementations base their internal time encoding on the Unix/ANSI/ISO C
seconds-since-1970 format, and some use 1970 as the rollover date for
interpreting two-digit dates instead of xx50. This includes, as of late
1997, Netscape and SSLeay. In addition the January 2038 limit for seconds

avnreccad ac a <ioned 2W-hit aAanantitv meanc thev ran't renrecent datec nact

CAPI Cootu WD U Doty —e DALt YUUIILA4 L)y IS Ui LIty Uil L L L oviit MuLe o puo

this point (which will cause problems with Microsoft's four-decade validity
periods). Implementations should therefore be very careful about keys with
very long expiry times, for security as well as date handling reasons,

Annex A

The Standards Designer Joke. I resisted adding this for a long time, but it
really needs to be present :-).

An engineer, a chemist, and a standards designer are stranded on a desert
island with absolutely nothing on it. One of them finds a can of spam washed

up by the waves.

The engineer says "Taking the strength of the seams into account, we can
calculate that bashing it against a rock with a given force will open it up

without destroying the contents”.

The chemist says "Taking the type of metal the can is made of into account,
we can calculate that further immersion in salt water will corrode it enough

to allow it to be easily opened after a day".

The standards designer gives the other two a condescending look, gazes into
the middle distance, and begins "Assuming we have an electric can opener...".

Acknowledgements

Anil Gangolli, Deepak Nadig, Eric Young, Harald Alvestrand, John Pawling, Phil
Griffin, and members of various X.509 and PKI-related mailing lists provided
useful comments on usage recommendations, encoding issues, and bugs.

	X.509 Style Guide

